ITM Grid Service Library: Fortran 90
 All Classes Files Functions Variables
itm_combinations.f90
Go to the documentation of this file.
2 
3  use itm_assert
4 
5  implicit none
6 
7 contains
8 
9  !> Service routines for counting and enumerating combinations of a vector
10  !> (i_1, ..., i_n), with the range of every component i_j is 0 <= i_j <= d_j and
11  !> for the sum of all components holds sum(i_j) = dsum for a given value of dsum.
12  !>
13  !> These routines are used to build lists of all possible object classes of a given
14  !> dimension for a given grid. d_j is then the dimension of space j (stored in the vector dmax),
15  !> and dsum the dimension of the grid objects under consideration.
16 
17  !> Compute the number of possible combinations for the vector.
18  integer recursive function count_combinations(dmax, dsum) result(ccount)
19  integer, intent(in) :: dmax(:), dsum
20 
21  ! internal
22  integer :: ifirst, iremaining
23 
24  call assert(sum(dmax) >= dsum)
25 
26  ! Extreme case: vector of length 1
27  ! Only one combination (the value of dsum)
28  if (size(dmax) == 1) then
29  ccount = 1
30  return
31  end if
32 
33  ! Vary the first component of the vector in the allowed range
34  ! and sum up the possible combinations of the remaining part of the vector
35  ccount = 0
36  do ifirst = min(dmax(1), dsum), 0, -1
37  iremaining = dsum - ifirst
38  if ( sum(dmax(2:)) < iremaining ) exit
39  ccount = ccount + count_combinations(dmax(2:), iremaining)
40  end do
41  end function count_combinations
42 
43 
44  !> Build a list of all possible combinations of the vector.
45  recursive function enumerate_combinations(dmax, dsum, cCountTotal) result(comb)
46  integer, intent(in) :: dmax(:), dsum, ccounttotal
47  integer :: comb(ccounttotal, size(dmax))
48 
49  ! internal
50  integer :: ifirst, ccount, csubcount, iremaining
51 
52  ! Extreme case: vector of length 1
53  ! Only one combination (the value of dsum)
54  if (size(dmax) == 1) then
55  comb(1,1) = dsum
56  return
57  end if
58 
59 
60  ! Vary the first component of the vector in the allowed range
61  ! and recursively assemble the possible combinations of the remaining part of the vector
62  ccount = 0
63  do ifirst = min(dmax(1), dsum), 0, -1
64  iremaining = dsum - ifirst
65  if ( sum(dmax(2:)) < iremaining ) exit
66  csubcount = count_combinations(dmax(2:), iremaining)
67  comb(ccount + 1 : ccount + csubcount, 1) = ifirst
68  comb(ccount + 1 : ccount + csubcount, 2:) = enumerate_combinations(dmax(2:), iremaining, csubcount)
69  ccount = ccount + csubcount
70  end do
71 
72  call assert( ccount == ccounttotal )
73  end function enumerate_combinations
74 
75 
76  !> Convenience routine: allocate and populate an array with all possible combinations.
77  subroutine allocate_combinations(dmax, dsum, comb)
78  integer, intent(in) :: dmax(:), dsum
79  integer, allocatable :: comb(:, :)
80 
81  ! internal
82  integer :: ccount
83 
84  ccount = count_combinations(dmax, dsum)
85  allocate( comb(ccount, size(dmax)) )
86  comb = enumerate_combinations(dmax, dsum, ccount)
87 
88  end subroutine allocate_combinations
89 
90 end module itm_combinations