ITM Grid Service Library: Fortran 90

src/service/itm_combinations.f90

Go to the documentation of this file.
00001 module itm_combinations
00002 
00003   use itm_assert
00004 
00005   implicit none      
00006 
00007 contains
00008 
00009   !> Service routines for counting and enumerating combinations of a vector 
00010   !> (i_1, ..., i_n), with the range of every component  i_j is 0 <= i_j <= d_j and
00011   !> for the sum of all components holds sum(i_j) = dsum for a given value of dsum.
00012   !>
00013   !> These routines are used to build lists of all possible object classes of a given
00014   !> dimension for a given grid. d_j is then the dimension of space j (stored in the vector dmax), 
00015   !> and dsum the dimension of the grid objects under consideration.
00016 
00017   !> Compute the number of possible combinations for the vector.
00018   integer recursive function count_combinations(dmax, dsum) result(ccount)
00019     integer, intent(in) :: dmax(:), dsum
00020 
00021     ! internal
00022     integer :: iFirst, iRemaining
00023 
00024     call assert(sum(dmax) >= dsum)
00025 
00026     ! Extreme case: vector of length 1
00027     ! Only one combination (the value of dsum)
00028     if (size(dmax) == 1) then
00029         ccount = 1
00030         return
00031     end if
00032 
00033     ! Vary the first component of the vector in the allowed range
00034     ! and sum up the possible combinations of the remaining part of the vector
00035     ccount = 0
00036     do iFirst = min(dmax(1), dsum), 0, -1
00037         iRemaining = dsum - iFirst
00038         if ( sum(dmax(2:)) < iRemaining ) exit
00039         ccount = ccount + count_combinations(dmax(2:), iRemaining)
00040     end do
00041   end function count_combinations
00042 
00043 
00044   !> Build a list of all possible combinations of the vector.
00045   recursive function enumerate_combinations(dmax, dsum, cCountTotal) result(comb)
00046     integer, intent(in) :: dmax(:), dsum, cCountTotal
00047     integer :: comb(cCountTotal, size(dmax))
00048 
00049     ! internal
00050     integer :: iFirst, cCount, cSubCount, iRemaining
00051 
00052     ! Extreme case: vector of length 1
00053     ! Only one combination (the value of dsum)
00054     if (size(dmax) == 1) then
00055         comb(1,1) = dsum
00056         return
00057     end if
00058 
00059 
00060     ! Vary the first component of the vector in the allowed range
00061     ! and recursively assemble the possible combinations of the remaining part of the vector
00062     cCount = 0
00063     do iFirst = min(dmax(1), dsum), 0, -1
00064         iRemaining = dsum - iFirst
00065         if ( sum(dmax(2:)) < iRemaining ) exit
00066         cSubCount = count_combinations(dmax(2:), iRemaining)
00067         comb(cCount + 1 : cCount + cSubCount, 1) = iFirst
00068         comb(cCount + 1 : cCount + cSubCount, 2:) = enumerate_combinations(dmax(2:), iRemaining, cSubCount)
00069         cCount = cCount + cSubCount
00070     end do
00071 
00072     call assert( cCount == cCountTotal )
00073   end function enumerate_combinations
00074 
00075 
00076   !> Convenience routine: allocate and populate an array with all possible combinations.
00077   subroutine allocate_combinations(dmax, dsum, comb)
00078     integer, intent(in) :: dmax(:), dsum
00079     integer, allocatable :: comb(:, :)
00080 
00081     ! internal
00082     integer :: ccount 
00083 
00084     ccount = count_combinations(dmax, dsum)
00085     allocate( comb(ccount, size(dmax)) )
00086     comb = enumerate_combinations(dmax, dsum, ccount)
00087 
00088   end subroutine allocate_combinations
00089 
00090 end module itm_combinations
 All Classes Namespaces Files Functions Variables