Fusion reactions in Lab

In lab-made fusion we use reactions with larger cross-sections:
$D+D \rightarrow T(1.01 \mathrm{MeV})+p(3.02 \mathrm{MeV})$
$\rightarrow{ }^{3} \mathrm{He}(0.82 \mathrm{MeV})+\mathrm{n}(2.45 \mathrm{MeV})$
$\mathrm{D}+{ }^{3} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}(3.6 \mathrm{MeV})+\mathrm{p}(14.7 \mathrm{MeV})$
$\mathrm{D}+\mathrm{T} \rightarrow{ }^{4} \mathrm{He}(3.5 \mathrm{MeV})+\mathrm{n}(14.1 \mathrm{MeV})$
$\mathrm{T}+\mathrm{T} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{n}+11.3 \mathrm{MeV}$

Cross-sections: parameterisation

S-function represents slowly varying nuclear part of the fusion reaction probability
S-function is important for fitting cross-section to experimental data:

$$
\sigma=\frac{S(E)}{E \exp \left(B_{G} / \sqrt{E}\right)}
$$

S-function is calculated with R-matrix cross-section analysis and fitted with a Padé polynomial:

$$
S(E)=\frac{A 1+E(A 2+E(A 3+E(A 4+E A 5)))}{1+E(B 1+E(B 2+E(B 3+E B 4)))}
$$

R-matrix theory is a mathematical description and a parameterisation of nuclear reactions: a many-body nuclear system with a short range strong forces is treated as a system with only 2-body degrees of freedom outside the 'channel radii'.
(Wigner, Eisenbud Phys.Rev.72(1947)29 and Lane, Thomas Rev.Mod.Phys.30(1958)257)

Cross-sections: parameterisation (2)

List of parameters for fusion cross-sections

Coefficient	$\mathrm{T}(\mathrm{d}, \mathrm{n})^{4} \mathrm{He}$	${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p})^{4} \mathrm{He}$	$\mathrm{D}(\mathrm{d}, \mathrm{p}) \mathrm{T}$	$\mathrm{D}(\mathrm{d}, \mathrm{n})^{3} \mathrm{He}$
$\mathrm{B}_{\mathrm{G}}(\sqrt{\mathrm{keV})}$	34.3827	68.7508	31.3970	31.3970
A1	6.927×10^{4}	5.7501×10^{6}	5.5576×10^{4}	5.3701×10^{4}
A2	7.454×10^{8}	2.5226×10^{3}	2.1054×10^{2}	3.3027×10^{2}
A3	2.050×10^{6}	4.5566×10^{1}	-3.2638×10^{-2}	-1.2706×10^{-1}
A4	5.2002×10^{4}	0.0	1.4987×10^{-6}	2.9327×10^{-5}
A5	0.0	0.0	1.8181×10^{-10}	-2.5151×10^{-9}
B1	6.38×10^{1}	-3.1995×10^{-3}	0.0	0.0
B2	-9.95×10^{-1}	-8.5530×10^{-6}	0.0	0.0
B3	6.981×10^{-5}	5.9014×10^{-8}	0.0	0.0
B4	1.728×10^{-4}	0.0	0.0	0.0
Energy range (keV)	$0.5-550$	$0.3-900$	$0.5-5000$	$0.5-4900$
$(\Delta S)_{\max }(\%)$	1.9	2.2	2.0	2.5

E in keV ; cross sections in $\mathrm{mb} \equiv 10^{-27} \mathrm{~cm}^{2}$
Bosch, Hale Nuclear Fusion 32(1992)611

Cross-sections

Cross-sections: fusion reactivity parameterisation

In plasma, ions have a velocity distribution, $\quad f(\vec{V})$
and fusion rate is proportional to fusion reactivity : $\quad R=\frac{n_{i} n_{j}}{1+\delta_{i j}}\langle\sigma\rangle$
$n_{i}, n_{j} \quad$ - ion densities; fusion reactivity - $\langle\sigma\rangle=\iint f\left(\vec{V}_{1}\right) f\left(\vec{V}_{2}\right) \sigma\left(\left|\vec{V}_{1}-\vec{V}_{2}\right|\right)\left|\vec{V}_{1}-\vec{V}_{2}\right| d \vec{V}_{1} d \vec{V}_{2}$

Useful parameterisation for the fusion reactivites:

$$
\begin{aligned}
& \left\langle\sigma v=C 1 \theta \sqrt{\xi /\left(\mu c^{2} T^{3}\right)} e^{-3 \xi}\right. \\
& \theta=T /\left[1-\frac{T(C 2+T(C 4+T C 6))}{1+T(C 3+T(C 5+T C 7))}\right] \\
& \xi=\left(B_{G}^{2} /(4 \theta)\right)^{1 / 3} \quad \text { Peres Nucl.Mater. } 50(1979) 5569
\end{aligned}
$$

Cross-sections: fusion reactivity parameterisation (2)

List of parameters for fusion reactivities in Maxwellian plasmas

Coefficient	$\mathrm{T}(\mathrm{d}, \mathrm{n})^{4} \mathrm{He}$	${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p})^{4} \mathrm{He}$	$\mathrm{D}(\mathrm{d}, \mathrm{p}) \mathrm{T}$	$\mathrm{D}(\mathrm{d}, \mathrm{n})^{3} \mathrm{He}$
$\mathrm{B}_{\mathrm{C}}(\sqrt{\mathrm{keV}})$	34.3827	68.7508	31.3970	31.3970
$\mathrm{~m}_{\mathrm{r}} \mathrm{c}^{2}(\mathrm{keV})$	1124656	1124572	937814	937814
C 1	1.17302×10^{-9}	5.51036×10^{-10}	5.65718×10^{-12}	5.43360×10^{-12}
C 2	1.51361×10^{-2}	6.41918×10^{-3}	3.41267×10^{-3}	5.85778×10^{-3}
C 3	7.51886×10^{-2}	-2.02896×10^{-3}	1.99167×10^{-3}	7.68222×10^{-3}
C 4	4.60643×10^{-3}	-1.91080×10^{-5}	0.0	0.0
C 5	1.35000×10^{-2}	1.35776×10^{-4}	1.05060×10^{-5}	-2.96400×10^{-6}
C 6	-1.06750×10^{-4}	0.0	0.0	0.0
C 7	1.36600×10^{-5}	0.0	0.0	0.0
$\mathrm{~T}_{\mathrm{i}}$ range (keV)	$0.2-100$	$0.5-190$	$0.2-100$	0.35
$(\Delta\langle\sigma \mathrm{v}\rangle)_{\max }(\%)$	2.5		$0.2-100$	

T is in keV ; reactivity is in $\mathrm{cm}^{2} \mathrm{~s}^{-1}$
Bosch, Hale Nuclear Fusion 32(1992)611

Cross-sections: fusion reactivity

$$
\begin{aligned}
& @ T=67 \mathrm{keV} \\
& \langle\sigma\rangle_{D T}=\max \\
& @ T=17 \mathrm{keV} \\
& \langle\sigma\rangle_{D^{3} H e}=\langle\sigma\rangle_{D D n} \\
& @ T=90 \mathrm{keV} \\
& \langle\sigma\rangle_{D^{3} H e} \approx 6.5 \\
& \langle\sigma\rangle_{D D n}
\end{aligned}
$$

Fusion γ-ray emission profile

Fusion α-particle source can be measured with radiation capture reaction - branch of the main fusion reactions $\mathrm{D}+\mathrm{T}=\alpha+\mathrm{n}$ and $\mathrm{D}+{ }^{3} \mathrm{He}=\alpha+\mathrm{p}$:
$\mathrm{D}+\mathrm{T} \rightarrow{ }^{5} \mathrm{He}+\gamma(\mathrm{Q}=16.63 \mathrm{MeV})$ and
$\mathrm{D}+{ }^{3} \mathrm{He} \rightarrow{ }^{5} \mathrm{Li}+\gamma(\mathrm{Q}=16.38 \mathrm{MeV})$
The branching ratio is small: $\frac{\sigma(\gamma)}{\sigma(\alpha+n)} \approx \frac{\sigma(\gamma)}{\sigma(\alpha+p)} \approx 5 \times 10^{-5}$
Nevertheless, the γ-ray profile measurements are feasible for the ITER-like reactors.

The gamma-ray spectrum recorded in the JET discharge with ${ }^{3} \mathrm{He}$-minority heating of the D-plasma.

2 broad peaks are related to the different final states in ${ }^{5}$ Li nucleus.

Gamma-ray diagnostics: γ - spectra

γ-ray spectrum recorded in $\mathrm{D}\left({ }^{3} \mathrm{He}\right)$-plasmas

γ-ray spectra recorded in α-particle simulation experiment:
${ }^{4} \mathrm{He}$ - and D-ions accelerated in MeV-energy range with $3^{\text {rd }}$ harmonic ICRF

Gamma-ray diagnostics: ${ }^{4} \mathrm{He}$ acceleration experiments

non-monotonic q-profile

Tomographic reconstructions of profiles measured in different q-profile phases of the optimised shear plasma discharge. The monotonic q-profile was settled down after sawtooth crash.

Diagnostic reactions

The goal is to study

- Fusion reaction products: $n, p, t,{ }^{3} \mathrm{He}$ and α
- ICRF-driven ions: $H, D, T,{ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ (in JET)

Neutron diagnostics: $2.5-\mathrm{MeV}$ neutrons from DD-reaction and $14-\mathrm{MeV}$ from DT Gamma diagnostics: fast ions
γ-ray emission is produced due to nuclear reactions with fuel and with the main JET (and ITER) impurities, Be and C

protons	deuterons	tritons	${ }^{3} \mathrm{He}$
$\mathrm{D}(\mathrm{p}, \gamma)^{3} \mathrm{He}$	${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{p} \gamma)^{10} \mathrm{Be}$	$\mathrm{T}(\mathrm{d}, \gamma))^{5} \mathrm{He}$	${ }^{\left.\mathrm{D}\left({ }^{3} \mathrm{He}, \gamma\right)\right)^{5} \mathrm{Li}}$
$\mathrm{T}(\mathrm{p}, \gamma)^{4} \mathrm{He}$	${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{n} \gamma)^{10} \mathrm{~B}$	${ }^{9} \mathrm{Be}(\mathrm{t}, \mathrm{n} \gamma)^{11} \mathrm{~B}$	${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p} \gamma\right)^{11} \mathrm{~B}$
$\left.{ }^{9} \mathrm{Be}(\mathrm{p}, \gamma)\right)^{10} \mathrm{~B}$	${ }^{12} \mathrm{C}(\mathrm{d}, \mathrm{p} \gamma)^{13} \mathrm{C}$	${ }^{12} \mathrm{C}(\mathrm{t}, \gamma){ }^{15} \mathrm{~N}$	${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{n} \gamma\right)^{11} \mathrm{C}$
${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p} \gamma){ }^{9} \mathrm{Be}$		$\left.{ }^{12} \mathrm{C}(\mathrm{t}, \mathrm{n} \gamma)\right)^{14} \mathrm{~N}$	${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{d} \gamma\right)^{10} \mathrm{~B}$
${ }^{9} \mathrm{Be}(\mathrm{p}, \alpha \gamma){ }^{6} \mathrm{Li}$		$\left.{ }^{12} \mathrm{C}(\mathrm{t}, \mathrm{\alpha} \gamma)\right)^{11} \mathrm{~B}$	${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p} \gamma\right)^{14} \mathrm{~N}$

α-particle diagnosis in JET is based on the ${ }^{9} \mathrm{Be}(\alpha, \mathrm{n} \gamma)^{12} \mathrm{C}$ reaction

CROSS-SECTION MEASUREMENTS ARE NEEDED

Nuclear reaction	Energy range, MeV	Levels, MeV	Angular distributions	Comments
${ }^{12} \mathbf{C}\left({ }^{3} \mathrm{He}, \mathrm{p} \gamma\right){ }^{14} \mathrm{~N}$	0.7, 1.0, 2.5, 3, 4-6	$1,2,4,5,6,7,8$	p, γ	Validation of existing data. Optimal number of angles: p-5, $\gamma-4$ (e.g. $0^{0}, 55^{0}, 90^{0}, 150^{\circ}$)
${ }^{9} \mathbf{B e}\left({ }^{3} \mathrm{He}, \mathrm{p} \gamma\right){ }^{11} \mathrm{~B}$	0.5-6	1,2, 6	p, γ	Optimal number of angles, AD for strong lines
${ }^{9} \mathbf{B e}\left({ }^{3} \mathrm{He}, \mathrm{n} \gamma\right){ }^{11} \mathrm{C}$	0.5-6	1-9	n, γ	Optimal number of angles, AD for strong lines
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{d} \gamma\right){ }^{10} \mathrm{~B}$	0.5-6	1-7	d, γ	Optimal number of angles, AD for strong lines
${ }^{12} \mathbf{C}(\mathrm{~d}, \mathrm{p} \gamma){ }^{13} \mathrm{C}$	0.5-1	1,2,3	p, γ	There is a paper of F.Papillon, P.Walter (NIM/B, 132,468,1997). I have not got the paper, check the AD for L 1 .
${ }^{9} \mathbf{B e}(\mathbf{d}, \mathbf{n} \gamma){ }^{10} \mathbf{B}$	0.3-3	1-7	n, γ	Optimal number of angles, AD for strong lines, $0.3-1 \mathrm{MeV}$ band is very important, ITER relevant.
${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{p} \gamma)^{10} \mathrm{Be}$	0.3-3	1,2,4	p, γ	Optimal number of angles, AD for strong lines, $0.3-1 \mathrm{MeV}$ band is very important, ITER relevant.
${ }^{9} \mathbf{B e}(\mathrm{~d}, \gamma)^{11} \mathrm{~B}$	0.3-1	-	γ_{0}	$0.3-1 \mathrm{MeV}$ band is very important, ITER relevant.
${ }^{9} \mathbf{B e}(\mathbf{t}, \mathrm{n} \gamma){ }^{11} \mathbf{B}$	TBD			Validation of existing data. ${ }^{9} \mathrm{Be}(\mathrm{t}, \gamma){ }^{12} \mathrm{~B}$ could be interesting at low energies

