Fusion reactions in Lab

In lab-made fusion we use reactions with larger cross-sections:

Cross-sections: parameterisation

S-function represents slowly varying nuclear part of the fusion reaction probability S-function is important for fitting cross-section to experimental data:

$$\sigma = \frac{S(E)}{E \exp(B_G / \sqrt{E})}$$

S-function is calculated with R-matrix cross-section analysis and fitted with a Padé polynomial:

$$S(E) = \frac{A1 + E(A2 + E(A3 + E(A4 + EA5)))}{1 + E(B1 + E(B2 + E(B3 + EB4)))}$$

R-matrix theory is a mathematical description and a parameterisation of nuclear reactions: a many-body nuclear system with a short range strong forces is treated as a system with only 2-body degrees of freedom outside the 'channel radii'. (Wigner, Eisenbud Phys.Rev.72(1947)29 and Lane, Thomas Rev.Mod.Phys.30(1958)257)

Cross-sections: parameterisation (2)

Coefficient	T(d, n) ⁴ He	³ He(d,p) ⁴ He	D(d, p)T	$D(d, n)^{3}He$
$B_{G} (\sqrt{keV})$	34.3827	68.7508	31.3970	31.3970
A1	6.927×10^4	5.7501×10^{6}	5.5576×10^4	5.3701×10^{4}
A2	7.454×10^{8}	2.5226×10^{3}	2.1054×10^{2}	3.3027×10^{2}
A3	2.050×10^{6}	4.5566×10^{1}	-3.2638×10^{-2}	-1.2706×10^{-1}
A4	5.2002×10^{4}	0.0	1.4987×10^{-6}	2.9327×10^{-5}
A5	0.0	0.0	1.8181×10^{-10}	-2.5151×10^{-9}
B1	6.38×10^{1}	-3.1995×10^{-3}	0.0	0.0
B2	-9.95×10^{-1}	-8.5530×10^{-6}	0.0	0.0
B3	6.981×10^{-5}	5.9014×10^{-8}	0.0	0.0
B4	1.728×10^{-4}	0.0	0.0	0.0
Energy range (keV)	0.5-550	0.3-900	0.5-5000	0.5-4900
(ΔS) _{max} (%)	1.9	2.2	2.0	2.5

List of parameters for fusion cross-sections

E in keV; cross sections in mb = 10^{-27} cm²

Bosch, Hale Nuclear Fusion 32(1992)611

Cross-sections

Cross-sections: fusion reactivity parameterisation

In plasma, ions have a velocity distribution, $f(\vec{V})$

and fusion rate is proportional to fusion reactivity : $R = \frac{n_i n_j}{1 + \delta_{ij}} \langle \sigma v \rangle$ $n_i, n_j \quad - \text{ ion densities; fusion reactivity } \quad \langle \sigma v \rangle = \iint f(\vec{V_1}) f(\vec{V_2}) \sigma(\left|\vec{V_1} - \vec{V_2}\right|) \left|\vec{V_1} - \vec{V_2}\right| d\vec{V_1} d\vec{V_2}$

Useful parameterisation for the fusion reactivites:

$$\langle \sigma v \rangle = C 1 \theta \sqrt{\xi / (\mu c^2 T^3) e^{-3\xi}}$$

 $\theta = T / \left[1 - \frac{T(C2 + T(C4 + TC6))}{1 + T(C3 + T(C5 + TC7))} \right]$
 $\xi = (B_G^2 / (4\theta))^{1/3}$ Peres Nucl.Mater.50(1979)5569

Cross-sections: fusion reactivity parameterisation (2)

Coefficient	T(d, n) ⁴ He	³ He(d,p) ⁴ He	D(d,p)T	$D(d, n)^{3}He$
$B_G (\sqrt{keV})$ $m_r c^2 (keV)$	34.3827 1 124 656	68.7508 1 124 572	31.3970 937 814	31.3970 937 814
C1	1.17302×10^{-9}	5.51036×10^{-10}	5.65718×10^{-12}	5.43360×10^{-12}
C2	1.51361×10^{-2}	6.41918×10^{-3}	3.41267×10^{-3}	5.85778×10^{-3}
C3	7.51886×10^{-2}	-2.02896×10^{-3}	1.99167×10^{-3}	7.68222×10^{-3}
C4	4.60643×10^{-3}	-1.91080×10^{-5}	0.0	0.0
C5	1.35000×10^{-2}	1.35776×10^{-4}	1.05060×10^{-5}	-2.96400×10^{-6}
C6	-1.06750×10^{-4}	0.0	0.0	0.0
C7	1.36600×10^{-5}	0.0	0.0	0.0
T _i range (keV)	0.2-100	0.5-190	0.2-100	0.2-100
$(\Delta \langle \sigma v \rangle)_{max}$ (%)	0.25	2.5	0.35	0.3

List of parameters for fusion reactivities in Maxwellian plasmas

T is in keV; reactivity is in cm²s⁻¹

Bosch, Hale Nuclear Fusion 32(1992)611

Cross-sections: fusion reactivity

Fusion γ -ray emission profile

Fusion α -particle source can be measured with radiation capture reaction – branch of the main fusion reactions D+T = α + n and D+³He = α + p :

D + T \rightarrow ⁵He + γ (Q=16.63 MeV) and

D + ${}^{3}\text{He} \rightarrow {}^{5}\text{Li} + \gamma \text{ (Q=16.38 MeV)}$

The branching ratio is small:

$$\frac{\sigma(\gamma)}{\sigma(\alpha+n)} \approx \frac{\sigma(\gamma)}{\sigma(\alpha+p)} \approx 5 \times 10^{-5}$$

Nevertheless, the γ -ray profile measurements are feasible for the ITER-like reactors.

The gamma-ray spectrum recorded in the JET discharge with ³He-minority heating of the D-plasma.

2 broad peaks are related to the different final states in ⁵Li nucleus.

Gamma-ray diagnostics: γ - spectra

Gamma-ray diagnostics: ⁴He acceleration experiments

Tomographic reconstructions of profiles measured in different q-profile phases of the optimised shear plasma discharge. The monotonic q-profile was settled down after sawtooth crash.

Diagnostic reactions

The goal is to study

Fusion reaction products: n, p, t, ³He and α

▶ ICRF-driven ions: *H*, *D*, *T*, ³*He* and ⁴*He* (in JET)

Neutron diagnostics: 2.5-MeV neutrons from DD-reaction and 14-MeV from DT Gamma diagnostics: fast ions

 γ -ray emission is produced due to nuclear reactions with fuel and with the main JET (and ITER) impurities, Be and C

protons	deuterons	tritons	³ He
D(p,γ) ³ He	⁹ Be(d,pγ) ¹⁰ Be	T(d,γ) ⁵ He	D(³ He,γ) ⁵ Li
T(p,γ) ⁴ He	⁹ Be(d,nγ) ¹⁰ B	⁹ Be(t,nγ) ¹¹ B	⁹ Be(³ He,pγ) ¹¹ B
⁹ Be(p,γ) ¹⁰ B	¹² C(d,pγ) ¹³ C	¹² C(t,γ) ¹⁵ N	⁹ Be(³ He,nγ) ¹¹ C
⁹ Be(p,p'γ) ⁹ Be		¹² C(t,nγ) ¹⁴ N	⁹ Be(³ He,dγ) ¹⁰ B
⁹ Be(p,α γ) ⁶ Li		¹² C(t,αγ) ¹¹ B	¹² C(³ He,pγ) ¹⁴ N
¹² C(p,p'γ) ¹² C			

 α -particle diagnosis in JET is based on the ⁹Be(α ,n γ)¹²C reaction

Nuclear reaction	Energy range, MeV	Levels, MeV	Angular distributions	Comments
¹² C(³ He,pγ) ¹⁴ N	0.7, 1.0, 2.5, 3, 4-6	1, 2, 4, 5, 6, 7, 8	p, γ	Validation of existing data . Optimal number of angles: p - 5, γ - 4 (e.g. $0^0, 55^0, 90^0, 150^0$)
⁹ Be(³ He,pγ) ¹¹ B	0.5-6	1, 2, 6	p, γ	Optimal number of angles, AD for strong lines
⁹ Be(³ He,nγ) ¹¹ C	0.5-6	1-9	n, γ	Optimal number of angles, AD for strong lines
⁹ Be(³ He,dγ) ¹⁰ B	0.5-6	1-7	d, γ	Optimal number of angles, AD for strong lines
¹² C(d,py) ¹³ C	0.5-1	1,2,3	p, γ	There is a paper of F.Papillon, P.Walter (NIM/B,132,468,1997). I have not got the paper, check the AD for L1.
⁹ Be(d,nγ) ¹⁰ B	0.3-3	1-7	n, γ	Optimal number of angles, AD for strong lines, 0.3-1 MeV band is very important, ITER relevant.
⁹ Be(d,pγ) ¹⁰ Be	0.3-3	1, 2, 4	p, γ	Optimal number of angles, AD for strong lines, 0.3-1 MeV band is very important, ITER relevant.
⁹ Be(d,γ) ¹¹ B	0.3-1	-	γο	0.3-1 MeV band is very important, ITER relevant.
⁹ Be(t,nγ) ¹¹ B	TBD			Validation of existing data. ${}^{9}\text{Be}(t,\gamma)^{12}\text{B}$ could be interesting at low energies

CROSS-SECTION MEASUREMENTS ARE NEEDED

