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Advanced Scicos, Kepler and Simulink integration 

https://kepler-project.org/
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Scicos code generation: a very short introduction

Why generating automatically codes for the target?

Because I'm a lazy man with very poor programming skills.

Because life is too short to waste time to write and debug program.

Because I want to sell my product NOW !

Because I have ZERO tolerance on bugs.

Because I believe that a good simulation is very close to reality.

Because ...................................................................................
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Scicos architecture

Editor Compiler Simulator

Code Gen.

Scicos Blocks
Library

Scilab Scilab+CAML “C”

Results

Internal

Standalone
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Scicos block : how does it work ?

Interfacing function: the Scicos block “user's interface”.
A Scilab script that is launched when you “double click” over 
a Scicos block.

Computational function: the Scicos block simulation function.
The code (typically a C function compiled as shared library) called 
during the simulation. 
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Scicos block computational function
#include <windows.h>          /* Compiler's include files's */
#include "scicos_block4.h"   /* Specific for Scicos block development */
#include "machine.h"

void custom_bock(scicos_block *block, int flag) 
{
  //** scicos_block is a “C” complex data structure that contains in/out ports parameters and values, block's parameters and states        

switch(flag) {  
    
      case Init: //** It is called just ONE TIME before simulation start. Put your initialization code here
      break; 

      case StateUpdate: //** It is called EACH CYCLE. Read the input ports and update the internal state of the block
                                     //** Use this section for OUTPUT blocks (e.g. D/A converter, digital output, etc.)
      break; 

      case OutputUpdate://** It is called EACH CYCLE. Read the internal state and update the output
                                        //** Use this section for INPUT block (e.g. A/D converter, digital input, etc.)
      break;

      case Ending://** It is called just ONE TIME at simulation end. Put your “shut down” code here. 
      break;   
        
  } // close the switch
   
} // close the computational function 
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The origin of Scicos computational function
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Scicos code generation: PD controller example

Super blocks help a lot 
to simplify and 
organize complex 
diagrams

(apple_hc_03.cos,
apple_hc_05.cos)
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Scicos code generation: PD controller example

Before and after code 
generation

(apple_hc_05.cos,
apple_hc_06.cos)
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Scicos code generation and rapid prototyping
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Two types of HIL mode

Basically, there are two ways to implement HIL with Scicos:

Interpreted: the simulation runs as usual BUT the user activates the “real 
time” option inside the simulation's control panel. Scicos-HIL. 
(DEMO+VIDEO) 

Standalone: you generate a “C” code and you compile it for the target 
platform. You run the code on the target and you recover the data using 
specific Scicos blocks (Scicos-RTAI, Scicos-FLEX). (VIDEO)
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Scicos-HIL

What is “Hardware In the Loop” ? 

What is necessary to implement HIL ?

HIL means that part of your system is “virtual” e.g. running on a suitable 
computer. The “virtual section” is connected to the real, physical, system 
using A/D (sensors) and D/A (actuators) interfaces;

You need a simulator with real time capability and I/O interfaces 
support.

Why do we need Hardware In the Loop ?
Because HIL is a very effective technique for model validation and controller 
tuning. Do you want to spend your life debugging low level codes ? 
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Scicos-HIL : Hardware In the Loop

In its base form Scicos-HIL is constituted 
by four blocks

 Analog Input

 Analog Output

 Digital Input

 Digital Output 
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Device driver support for Scicos

Open Source: Comedi (www.comedi.org) is the only available option for 
a complete OS solution (GLP2 license). Comedi covers the most used 
data acquisition cards available on the market.  

Proprietary. Unfortunately, some manufactures provide neither detailed 
technical specifications of their cards nor an open source driver. From 
ScicosLab standpoint it is not a problem, because the only thing that you 
really need is a shared library (*.dll or *.so). 

Custom. You can develop custom driver or use “direct access” code 
inside a Scicos block. If you develop “direct access” blocks you need to 
run Scicos (ScicosLab) as a “root” user. 

 

http://www.comedi.org/
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ScicosLab includes real time support ?
Yes, of course.

 

The quality of service is very operating system dependent.

Windows does not offer guarantee about quality of service. The minimum 
sampling time is around 20ms.

Recent Linux kernels are 95% “soft” real time up to 1.0 ms sampling time.

There are many “hard” real time Linux versions/patches (RTAI, Xenomai, 
RT_PREEMPT). ScicosLab could be easily modified in order to use the RT 
services available. For the maximum compatibility we suggest the POSIX 
compliant API offered by RT_PREEMPT.   



Advanced concepts

15Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache,  June/July 2010

Ball and beam experiment with ScicosLab
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Ball and beam: the MODEL
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Ball and beam experiment challenge

Additional difficulties:

• Cheap (low performances) easy to find LEGO components; low 
cost DAQ card (USB Dux) usable also on laptop PCs

• Full state LQR digital feedback controller

• ONLY one sensor (ball position)

• We need an state OBSERVER in order to recreate the full 
system’s state

• We are not satisfied of the accuracy of a simple state feedback: 
we want zero error in the ball position (steady state). We add an 
additional digital integrator in the position feedback loop. 
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Ball and beam experiment: linear model
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Ball and beam experiment: non linear model
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  /* [ x_dot v_dot theta_dot omega_dot ]  ;  [ x v theta omega]  */

  block->xd[0] = v ;
  block->xd[1] = 5.0/7.0*g*sin(theta) ;
  block->xd[2] = omega ; 
  block->xd[3] = (m*g*x)/(Jb+m*x*x)*cos(theta)-
                 (Kv*Kc*Kc*Kt)/(Ra*(Jb+m*x*x))*omega +
                (Kc*Kt)/(Ra*(Jb+m*x*x))*Um ;
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Hardware In the Loop experiment with ScicosLab
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Ball position sensor



Advanced concepts

22Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache,  June/July 2010

Standalone HIL mode

We have developed two ways to implement HIL in standalone mode:

Scicos-RTAI: the code is generated from a Scicos diagram (super block) 
and compiled for a Linux RTAI target (usually x86 type). The compiled 
code runs as RTAI task (in user space). You can interact with the task 
using RTAI-Lab (see next slide).
(www.rtai.org)

Scicos-FLEX: the code is generated from a Scicos diagram (superblock) 
and cross-compiled for a specific target (Microchip DSPIC). The code is 
“flashed” in the chip. You can interact with the task using specific Scicos 
blocks and USB communication.
(http://www.evidence.eu.com/content/view/175/216)
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Modelica and Scicos-HIL

Within some hardware and software (operating system) limitation you can run a 
Modelica simulation in real time and interface it with real signals using Scicos-HIL.

A simple RCL circuit is simulated and the input and output signals are visualized 
using a real scope connected at the D/A outputs of a data acquisition card.
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As the previous example, but using an electrical circuits that uses op-amp.

This circuit is simple to realize than 
the previous one because it uses 
standard components of 
reasonable values. 
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Hybrid systems

Hybrid systems: internal and external signals are a mix of sampled and 
continuous time signals.
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Scicos and Kepler architectures

Editor Compiler Simulator

Blocks library

Scilab Scilab+CAML “C”

Results

Editor Simulator Results

Solvers library

Directors library

Actors library

Java

Java



Advanced concepts

28Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache,  June/July 2010

Simulink, Scicos and Kepler architectures:
different names, same s**t

Simulink Scicos Kepler

Main entity Diagram Diagram Work flow

Atomic entity Block (C) Block (C, Scilab) Actor (Java)

Sub assembly SubDiagram SuperBlock Composite Actor

Connection Link (line) Link Relation

Script language Matlab (*.m) Scilab (*.sci) Not Available

Code 
Generation

Real Time 
Workshop

Scicos Code 
Generators

Not available
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Scicos and Kepler: same simulation, same s**t

Kepler Scicos
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Kepler and Scicos simulation engines (continuous)

The continuous time section is handled by the Scicos simulator using 
solvers (solvers library). Scicos uses different solvers in according to the 
specific problem. Usually Scicos choose automatically the right solver and 
the default parameters works most of the time.

Notice that the solver parameters in Scicos are the same of Kepler.

Same parameters, same ....
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Kepler and Scicos simulation engines (discrete)

The “discrete Scicos directors 
are built in inside the 
simulator.
This “monolithic” architecture 
was the standard at the time.
Both Scicos and Simulink use 
the very same approach.
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Scicos block / Kepler actor

A Scicos block is composed 
by two separate functions:

the interfacing function: 
Scicos block “user's interface”.
A Scilab script that is launched 
when you “double click” over a 
Scicos block;

the computational function: 
Scicos block simulation 
function.
The code (typically a C function 
compiled as shared library) 
called during the simulation. 

A Kepler actor is a monolithic 
Java code that include the user 
interface code (“double click”) and 
the code (methods) used for the 
simulation. A Kepler actor is 
capable to host an external C/C++/
FORTRAN code with an 
appropriate Java wrapper.

FC2K do this job for you :-). 
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Scicos block computational function (simplified)
#include <windows.h>          /* Compiler's include files's */
#include "scicos_block4.h"   /* Specific for Scicos block development */
#include "machine.h"

void custom_bock(scicos_block *block, int flag) 
{
  //** scicos_block is a “C” complex data structure that contains in/out ports parameters and values, block's parameters and states        

switch(flag) {  
    
      case Init: //** It is called just ONE TIME before simulation start. Put your initialization code here
      break; 

      case StateUpdate: //** It is called EACH CYCLE. Read the input ports and update the internal state of the block
                                     //** Use this section for OUTPUT blocks (e.g. D/A converter, digital output, etc.)
      break; 

      case OutputUpdate://** It is called EACH CYCLE. Read the internal state and update the output
                                        //** Use this section for INPUT block (e.g. A/D converter, digital input, etc.)
      break;

      case Ending://** It is called just ONE TIME at simulation end. Put your “shut down” code here. 
      break;   
        
  } // close the switch
   
} // close the computational function 
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Kepler actor Java skeleton (simplified)
/* HelloWorld actor for getting used to PtolemyII/Kepler concepts.*/
public class HelloWorld extends TypedAtomicActor {

/* This is the implementation of a HelloWorld actor. This actor outputs "Hello World!" as string from its output port.  */
    public HelloWorld(CompositeEntity container, String name) throws NameDuplicationException, IllegalActionException  {
    }
    ////                     ports and parameters                  ////
    public TypedIOPort output = null; 
    ////                         public methods                    ////

   public void preinitialize() throws IllegalActionException { //** Set port types and/or scheduling information.
                     //** The preinitialize() method is only invoked once per workflow execution and is invoked before any of the other action methods.
   }

   public void initialize() throws IllegalActionException { //**Initialize local variables and begin execution of the actor. }

   public void prefirefire() throws IllegalActionException { //**Determine whether firing should proceed. This method is invoked each time the actor is
                            //**  fired, before the actor is fired. The method can also be used to perform an operation that will happen exactly once per iteration.}

   public void fire() throws IllegalActionException { //** Read actor inputs and current parameter values, and produce outputs. }

   public void postfire() throws IllegalActionException { //** Determine if actor execution is complete, schedule the next firing (if appropriate) and
                                                                                            //**  update the actor's persistent state.  }

   public void wrapUp() throws IllegalActionException {//** Display final results. The wrapUp() method is only invoked once 
                                                                                            //** per workflow execution. }
}
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Scicos and Kepler computational sections
(for discrete time applications)

Scicos Kepler Notes

Initialization Init() initialize() There is a one-to-one 
correspondence

Run time 
(periodic)

OuputUpdate()
StateUpdate()

fire() Inside our code generator we 
have merged the the two 
calls in a single function 
( called <name>_isr() ) that 
summarize the job. 

Simulation ends End() wrapUp() There is a one-to-one 
correspondence
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How ScicosLab-ITM (Scicos-ITM) was born

September 2009, status: 

● ScicosLab GTK 4.3 : the stable version, full source code available.

● Scicos-RTAI : the last stable version of the code generator of embedded,
 real time applications, developed by Roberto Bucher (SUPSI, Lugano)  

Development actions:

● ScicosLab 4.3 has required a minimum of customization to become
 able to run on the 64 bit remote Linux server. 

● Scicos-ITM: Scicos-RTAI has been modified and extended, in order to
  become capable to produce all the files required by FC2K.
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Scicos (Scicos-ITM) architecture

Editor Compiler Simulator

Code Gen.

Blocks library

Scilab Scilab+CAML “C”

Results

For internal sim.

For standalone 
applications

Scicos-ITM Files for FC2K 
integration

scs_m %cpr

Scilab

Scilab
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Scicos-ITM: where the files are ?

All the “custom” development (like Scicos-ITM) are store inside the “contrib” 
folder. For Scicos-ITM is “contrib/ITM”. This folder contains several sub folders:

"macrosmacros" : all the Scilab macros (code generator, interfacing functions, etc.)

"RT_template": the files that “program” the code generator. 

"routines" : for the moment this folder is empty. Usually this folder contains the 
C "static" code, e.g. not dynamically generated. If this folder is not empty, the 
code must be recompiled before usage (please read the buit-in README file).   
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Scicos-ITM: “contrib/ITM/macros”

"macros" folder (Scilab scripts) :

ITMCodeGen_.sci : the code of the code generator

SetTarget_.sci : allow the re-targeting of the code generator on different 
architectures/targets. It is use to switch several default options of the code 
generator;

kepler_generic_inp.sci : input block for Kepler application. This block 
dynamically generate a C code that recover data from the Kepler environment;
kepler_generic_out.sci : output block for Kepler application. As above, but to 
Kepler.

loadmacros.sce : the startup file used to load and activate the toolbox; this file 
is automatically called by "scilab.star" when ScicosLab starts.
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Scicos-ITM: “contrib/ITM/RT_template”

"RT_template" folder

    * itm.gem : this file specify the elements of the tool chain; in this case:

    * kepler.mak : the template makefile. This is the standard "pattern" used to
                           automatically generate the Makefile required to compile the
                           shared library used by FC2K

    * kepler.cmd: a list a Scilab command used to "program" the code generator   
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Scicos-ITM: kepler.cmd

Actually, “kepler.cmd” is just a Scilab script, a sequence of Scilab functions 
activated in sequence inside the code generator (Scicos-ITM) main loop. 

lines(0); //** scroll free

[CCode,FCode]     = gen_blocks(); //** generate the C and Fortran code of dyn. blocks 

[Code,Code_common, xml, xsd] = make_standalone42(); //** generate the C code 
                                                    //** and the parameters files 

files           = write_code(Code,CCode,FCode,Code_common); //** write into files

Makename        = rt_gen_make (rdnom, files, archname); //** gen. Makefile  

cppwr_file_name = rt_gen_cppwr(rdnom, files, archname); //** the C++ wrapper (FC2K)

cwr_file_name   = rt_gen_cwr(rdnom, files, archname);   //** the C wrapper (“no-init”bug

xml_file_name   = rt_gen_xml(xml, rdnom, files, archname); //** write the file xml

xsd_file_name   = rt_gen_xsd(xsd, rdnom, files, archname); //** write the file xsd

ok = build_fc2k_lib(); //** build the library for FC2K using the Makefile
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Synchronous and asynchronous events in Scicos
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Synchronous and asynchronous (events) signals

Examples :
 Keyboard
 Mouse
 Two clocks on the same MB
 Two clocks on the same Scicos diagram
 The clock and clock/17
 The clock and the clock multiplied by 56/12
 A CPU at 2.5GHz and a DDR2 RAM at 800MHz
 Two watches
 A zero crossing signal
 Two radio controlled watches
 A telephone call
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Synchronous and asynchronous (events) signals

In a SYNCHRONOUS system operations are coordinated under the centralized 
control of a fixed-rate clock signal or a combination of harmonically linked 
clocks.

An ASYNCHRONOUS system, in contrast, has no global clock: instead, it 
operates under distributed “just in time” control.

Pure discrete time systems can be simulated and realized as pure synchronous 
systems.

Mixed (hybrid) continuous time / discrete time systems require a mix of 
synchronous and asynchronous signals.
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Synchronous and asynchronous events

Examples of event handling using Scicos.

Example_1 : pure discrete system

Example_2 : events from continuous systems (sync/async, zero c.)

Example_3 : sync/async CLOCKS

Example_4 : typical mistakes using CLOCKS

Example_5 : Scicos can talk to you. 
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The thin Red line (in Scicos)

Simple discrete time simulation (Event/Example_1.cos)
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Synchronous and asynchronous events
Events from a continuous 
system.
(Events/Example_2.cos)

Question:

Are “Positive” and 
“Zero_Crossing” sync or 
async events ?
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More the clocks, more the fun.

Question:

“Are you capable to 
anticipate simulation 
results?”

Events/Example_3.cos
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There is more than one of everything (in Scicos)
Question: “Are you capable to anticipate simulation results?” 
(Events/Example_4.cos)
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Scicos can talk to you
Welcome to the last circle of the “Scicos Inferno”. (Example_5.cos).
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