
Advanced concepts

1Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Advanced Scicos, Kepler and Simulink integration

https://kepler-project.org/

Advanced concepts

2Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos code generation: a very short introduction

Why generating automatically codes for the target?

Because I'm a lazy man with very poor programming skills.

Because life is too short to waste time to write and debug program.

Because I want to sell my product NOW !

Because I have ZERO tolerance on bugs.

Because I believe that a good simulation is very close to reality.

Because ...

Advanced concepts

3Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos architecture

Editor Compiler Simulator

Code Gen.

Scicos Blocks
Library

Scilab Scilab+CAML “C”

Results

Internal

Standalone

Advanced concepts

4Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos block : how does it work ?

Interfacing function: the Scicos block “user's interface”.
A Scilab script that is launched when you “double click” over
a Scicos block.

Computational function: the Scicos block simulation function.
The code (typically a C function compiled as shared library) called
during the simulation.

Advanced concepts

5Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos block computational function
#include <windows.h> /* Compiler's include files's */
#include "scicos_block4.h" /* Specific for Scicos block development */
#include "machine.h"

void custom_bock(scicos_block *block, int flag)
{
 //** scicos_block is a “C” complex data structure that contains in/out ports parameters and values, block's parameters and states

switch(flag) {

 case Init: //** It is called just ONE TIME before simulation start. Put your initialization code here
 break;

 case StateUpdate: //** It is called EACH CYCLE. Read the input ports and update the internal state of the block
 //** Use this section for OUTPUT blocks (e.g. D/A converter, digital output, etc.)
 break;

 case OutputUpdate://** It is called EACH CYCLE. Read the internal state and update the output
 //** Use this section for INPUT block (e.g. A/D converter, digital input, etc.)
 break;

 case Ending://** It is called just ONE TIME at simulation end. Put your “shut down” code here.
 break;

 } // close the switch

} // close the computational function

Advanced concepts

6Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

The origin of Scicos computational function

B

Output

xk1=A xkBuk ; StateUpdate

yk=C xkDuk ;OutputUpdate

+

A

C +

xk1 xk

D

uk yk
1
z

Input

Advanced concepts

7Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos code generation: PD controller example

Super blocks help a lot
to simplify and
organize complex
diagrams

(apple_hc_03.cos,
apple_hc_05.cos)

Advanced concepts

8Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos code generation: PD controller example

Before and after code
generation

(apple_hc_05.cos,
apple_hc_06.cos)

Advanced concepts

9Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos code generation and rapid prototyping

Advanced concepts

10Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Two types of HIL mode

Basically, there are two ways to implement HIL with Scicos:

Interpreted: the simulation runs as usual BUT the user activates the “real
time” option inside the simulation's control panel. Scicos-HIL.
(DEMO+VIDEO)

Standalone: you generate a “C” code and you compile it for the target
platform. You run the code on the target and you recover the data using
specific Scicos blocks (Scicos-RTAI, Scicos-FLEX). (VIDEO)

Advanced concepts

11Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos-HIL

What is “Hardware In the Loop” ?

What is necessary to implement HIL ?

HIL means that part of your system is “virtual” e.g. running on a suitable
computer. The “virtual section” is connected to the real, physical, system
using A/D (sensors) and D/A (actuators) interfaces;

You need a simulator with real time capability and I/O interfaces
support.

Why do we need Hardware In the Loop ?
Because HIL is a very effective technique for model validation and controller
tuning. Do you want to spend your life debugging low level codes ?

Advanced concepts

12Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos-HIL : Hardware In the Loop

In its base form Scicos-HIL is constituted
by four blocks

 Analog Input

 Analog Output

 Digital Input

 Digital Output

Advanced concepts

13Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Device driver support for Scicos

Open Source: Comedi (www.comedi.org) is the only available option for
a complete OS solution (GLP2 license). Comedi covers the most used
data acquisition cards available on the market.

Proprietary. Unfortunately, some manufactures provide neither detailed
technical specifications of their cards nor an open source driver. From
ScicosLab standpoint it is not a problem, because the only thing that you
really need is a shared library (*.dll or *.so).

Custom. You can develop custom driver or use “direct access” code
inside a Scicos block. If you develop “direct access” blocks you need to
run Scicos (ScicosLab) as a “root” user.

http://www.comedi.org/

Advanced concepts

14Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

ScicosLab includes real time support ?
Yes, of course.

The quality of service is very operating system dependent.

Windows does not offer guarantee about quality of service. The minimum
sampling time is around 20ms.

Recent Linux kernels are 95% “soft” real time up to 1.0 ms sampling time.

There are many “hard” real time Linux versions/patches (RTAI, Xenomai,
RT_PREEMPT). ScicosLab could be easily modified in order to use the RT
services available. For the maximum compatibility we suggest the POSIX
compliant API offered by RT_PREEMPT.

Advanced concepts

15Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Ball and beam experiment with ScicosLab

Advanced concepts

16Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Ball and beam: the MODEL

() () () M
bA

TC

bA

TCV

b

U
mxJR

KK

mxJR

KKK

mxJ

mgx
22

2

2
cos

+
+

+
−

+
= ωθω

ωθ =

vx =

Why it is so hard to control ? Just look at the model ...

"We choose the ball and beam, not because it is easy, but because it is hard”.

()θsin
7

5
gv =

• Non linear (in many ways)

• Unstable

• Complex (4th order)

Advanced concepts

17Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Ball and beam experiment challenge

Additional difficulties:

• Cheap (low performances) easy to find LEGO components; low
cost DAQ card (USB Dux) usable also on laptop PCs

• Full state LQR digital feedback controller

• ONLY one sensor (ball position)

• We need an state OBSERVER in order to recreate the full
system’s state

• We are not satisfied of the accuracy of a simple state feedback:
we want zero error in the ball position (steady state). We add an
additional digital integrator in the position feedback loop.

Advanced concepts

18Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Ball and beam experiment: linear model

L i n e a r i z e d _ S y s

y = C x + D u

x d = A x + B u
S / H

B a l l _ P o s i t i o n

M o t o r _ I n

F e e d b a c k

+

+S e t P o i n t

F

S t a t e _ F e e d B a c k

E r r o r

+

-

B a l l a n d B e a m : L i n e a r P l a n t M o d e l B a l l a n d B e a m : L i n e a r P l a n t M o d e l

O b s e r v e r

S y s _ I n

S y s _ O u t

S y s _ 0 _ O u t

S y s _ 0 _ S t a t e

D i s c r e t e _ I n t e g r a t o r

I n O u t

T sT s T s / 1 0T s / 1 0

B a l l _ P o s E r r

Advanced concepts

19Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Ball and beam experiment: non linear model
b b _ n o n _ l i n e a r

S / H
M o t o r _ C u r r e n t

M o t o r _ V o l t a g e

F e e d b a c k

+

+

F

S t a t e _ F e e d b a c k

E r r o r

+

-

B a l l _ P o s i t i o n

B e a m _ A n g l e

N o n L i n e a r M o d e l

M o t o r _ V o l t a g e
M o t o r _ C u r r e n t
B e a m _ A n g l e
B a l l _ P o s i t i o n

D i s c r e t e _ I n t e g r a t o r

I n O u t

O b s e r v e r

S y s _ I n

S y s _ O u t

S y s _ O _ O u t

S y s _ O _ S t a t e

S e t P o i n t

B a l l a n d B e a m : N o n L i n e a r P l a n t M o d e lB a l l a n d B e a m : N o n L i n e a r P l a n t M o d e l

T sT s

T s / 1 0T s / 1 0

 /* [x_dot v_dot theta_dot omega_dot] ; [x v theta omega] */

 block->xd[0] = v ;
 block->xd[1] = 5.0/7.0*g*sin(theta) ;
 block->xd[2] = omega ;
 block->xd[3] = (m*g*x)/(Jb+m*x*x)*cos(theta)-
 (Kv*Kc*Kc*Kt)/(Ra*(Jb+m*x*x))*omega +
 (Kc*Kt)/(Ra*(Jb+m*x*x))*Um ;

Advanced concepts

20Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Hardware In the Loop experiment with ScicosLab

b b _ h i l

S U M

+

+

F

E r r o r

+

-

D e a d B a n d C o m p

E x p r e s s i o n

M a t h e m a t i c a l

M o t o r

B a l l _ P o s i t i o n (m m)I n t e g r a t o r

O b s e r v e r

S y s _ I n

S y s _ O u t

S y s _ O _ S t a t e

S y s _ O _ O u t

P l a n t

M _ I n x _ O u t
0 . 0 0

- K -

M _ L i m i t

Advanced concepts

21Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Ball position sensor

Advanced concepts

22Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Standalone HIL mode

We have developed two ways to implement HIL in standalone mode:

Scicos-RTAI: the code is generated from a Scicos diagram (super block)
and compiled for a Linux RTAI target (usually x86 type). The compiled
code runs as RTAI task (in user space). You can interact with the task
using RTAI-Lab (see next slide).
(www.rtai.org)

Scicos-FLEX: the code is generated from a Scicos diagram (superblock)
and cross-compiled for a specific target (Microchip DSPIC). The code is
“flashed” in the chip. You can interact with the task using specific Scicos
blocks and USB communication.
(http://www.evidence.eu.com/content/view/175/216)

Advanced concepts

23Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Advanced concepts

24Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Modelica and Scicos-HIL

Within some hardware and software (operating system) limitation you can run a
Modelica simulation in real time and interface it with real signals using Scicos-HIL.

A simple RCL circuit is simulated and the input and output signals are visualized
using a real scope connected at the D/A outputs of a data acquisition card.

Advanced concepts

25Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

As the previous example, but using an electrical circuits that uses op-amp.

This circuit is simple to realize than
the previous one because it uses
standard components of
reasonable values.

Advanced concepts

26Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Hybrid systems

Hybrid systems: internal and external signals are a mix of sampled and
continuous time signals.

Advanced concepts

27Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos and Kepler architectures

Editor Compiler Simulator

Blocks library

Scilab Scilab+CAML “C”

Results

Editor Simulator Results

Solvers library

Directors library

Actors library

Java

Java

Advanced concepts

28Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Simulink, Scicos and Kepler architectures:
different names, same s**t

Simulink Scicos Kepler

Main entity Diagram Diagram Work flow

Atomic entity Block (C) Block (C, Scilab) Actor (Java)

Sub assembly SubDiagram SuperBlock Composite Actor

Connection Link (line) Link Relation

Script language Matlab (*.m) Scilab (*.sci) Not Available

Code
Generation

Real Time
Workshop

Scicos Code
Generators

Not available

Advanced concepts

29Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos and Kepler: same simulation, same s**t

Kepler Scicos

Advanced concepts

30Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Kepler and Scicos simulation engines (continuous)

The continuous time section is handled by the Scicos simulator using
solvers (solvers library). Scicos uses different solvers in according to the
specific problem. Usually Scicos choose automatically the right solver and
the default parameters works most of the time.

Notice that the solver parameters in Scicos are the same of Kepler.

Same parameters, same

Advanced concepts

31Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Kepler and Scicos simulation engines (discrete)

The “discrete Scicos directors
are built in inside the
simulator.
This “monolithic” architecture
was the standard at the time.
Both Scicos and Simulink use
the very same approach.

Advanced concepts

32Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos block / Kepler actor

A Scicos block is composed
by two separate functions:

the interfacing function:
Scicos block “user's interface”.
A Scilab script that is launched
when you “double click” over a
Scicos block;

the computational function:
Scicos block simulation
function.
The code (typically a C function
compiled as shared library)
called during the simulation.

A Kepler actor is a monolithic
Java code that include the user
interface code (“double click”) and
the code (methods) used for the
simulation. A Kepler actor is
capable to host an external C/C++/
FORTRAN code with an
appropriate Java wrapper.

FC2K do this job for you :-).

Advanced concepts

33Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos block computational function (simplified)
#include <windows.h> /* Compiler's include files's */
#include "scicos_block4.h" /* Specific for Scicos block development */
#include "machine.h"

void custom_bock(scicos_block *block, int flag)
{
 //** scicos_block is a “C” complex data structure that contains in/out ports parameters and values, block's parameters and states

switch(flag) {

 case Init: //** It is called just ONE TIME before simulation start. Put your initialization code here
 break;

 case StateUpdate: //** It is called EACH CYCLE. Read the input ports and update the internal state of the block
 //** Use this section for OUTPUT blocks (e.g. D/A converter, digital output, etc.)
 break;

 case OutputUpdate://** It is called EACH CYCLE. Read the internal state and update the output
 //** Use this section for INPUT block (e.g. A/D converter, digital input, etc.)
 break;

 case Ending://** It is called just ONE TIME at simulation end. Put your “shut down” code here.
 break;

 } // close the switch

} // close the computational function

Advanced concepts

34Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Kepler actor Java skeleton (simplified)
/* HelloWorld actor for getting used to PtolemyII/Kepler concepts.*/
public class HelloWorld extends TypedAtomicActor {

/* This is the implementation of a HelloWorld actor. This actor outputs "Hello World!" as string from its output port. */
 public HelloWorld(CompositeEntity container, String name) throws NameDuplicationException, IllegalActionException {
 }
 //// ports and parameters ////
 public TypedIOPort output = null;
 //// public methods ////

 public void preinitialize() throws IllegalActionException { //** Set port types and/or scheduling information.
 //** The preinitialize() method is only invoked once per workflow execution and is invoked before any of the other action methods.
 }

 public void initialize() throws IllegalActionException { //**Initialize local variables and begin execution of the actor. }

 public void prefirefire() throws IllegalActionException { //**Determine whether firing should proceed. This method is invoked each time the actor is
 //** fired, before the actor is fired. The method can also be used to perform an operation that will happen exactly once per iteration.}

 public void fire() throws IllegalActionException { //** Read actor inputs and current parameter values, and produce outputs. }

 public void postfire() throws IllegalActionException { //** Determine if actor execution is complete, schedule the next firing (if appropriate) and
 //** update the actor's persistent state. }

 public void wrapUp() throws IllegalActionException {//** Display final results. The wrapUp() method is only invoked once
 //** per workflow execution. }
}

Advanced concepts

35Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos and Kepler computational sections
(for discrete time applications)

Scicos Kepler Notes

Initialization Init() initialize() There is a one-to-one
correspondence

Run time
(periodic)

OuputUpdate()
StateUpdate()

fire() Inside our code generator we
have merged the the two
calls in a single function
(called <name>_isr()) that
summarize the job.

Simulation ends End() wrapUp() There is a one-to-one
correspondence

Advanced concepts

36Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

How ScicosLab-ITM (Scicos-ITM) was born

September 2009, status:

● ScicosLab GTK 4.3 : the stable version, full source code available.

● Scicos-RTAI : the last stable version of the code generator of embedded,
 real time applications, developed by Roberto Bucher (SUPSI, Lugano)

Development actions:

● ScicosLab 4.3 has required a minimum of customization to become
 able to run on the 64 bit remote Linux server.

● Scicos-ITM: Scicos-RTAI has been modified and extended, in order to
 become capable to produce all the files required by FC2K.

Advanced concepts

37Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos (Scicos-ITM) architecture

Editor Compiler Simulator

Code Gen.

Blocks library

Scilab Scilab+CAML “C”

Results

For internal sim.

For standalone
applications

Scicos-ITM Files for FC2K
integration

scs_m %cpr

Scilab

Scilab

Advanced concepts

38Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos-ITM: where the files are ?

All the “custom” development (like Scicos-ITM) are store inside the “contrib”
folder. For Scicos-ITM is “contrib/ITM”. This folder contains several sub folders:

"macrosmacros" : all the Scilab macros (code generator, interfacing functions, etc.)

"RT_template": the files that “program” the code generator.

"routines" : for the moment this folder is empty. Usually this folder contains the
C "static" code, e.g. not dynamically generated. If this folder is not empty, the
code must be recompiled before usage (please read the buit-in README file).

Advanced concepts

39Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos-ITM: “contrib/ITM/macros”

"macros" folder (Scilab scripts) :

ITMCodeGen_.sci : the code of the code generator

SetTarget_.sci : allow the re-targeting of the code generator on different
architectures/targets. It is use to switch several default options of the code
generator;

kepler_generic_inp.sci : input block for Kepler application. This block
dynamically generate a C code that recover data from the Kepler environment;
kepler_generic_out.sci : output block for Kepler application. As above, but to
Kepler.

loadmacros.sce : the startup file used to load and activate the toolbox; this file
is automatically called by "scilab.star" when ScicosLab starts.

Advanced concepts

40Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos-ITM: “contrib/ITM/RT_template”

"RT_template" folder

 * itm.gem : this file specify the elements of the tool chain; in this case:

 * kepler.mak : the template makefile. This is the standard "pattern" used to
 automatically generate the Makefile required to compile the
 shared library used by FC2K

 * kepler.cmd: a list a Scilab command used to "program" the code generator

Advanced concepts

41Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos-ITM: kepler.cmd

Actually, “kepler.cmd” is just a Scilab script, a sequence of Scilab functions
activated in sequence inside the code generator (Scicos-ITM) main loop.

lines(0); //** scroll free

[CCode,FCode] = gen_blocks(); //** generate the C and Fortran code of dyn. blocks

[Code,Code_common, xml, xsd] = make_standalone42(); //** generate the C code
 //** and the parameters files

files = write_code(Code,CCode,FCode,Code_common); //** write into files

Makename = rt_gen_make (rdnom, files, archname); //** gen. Makefile

cppwr_file_name = rt_gen_cppwr(rdnom, files, archname); //** the C++ wrapper (FC2K)

cwr_file_name = rt_gen_cwr(rdnom, files, archname); //** the C wrapper (“no-init”bug

xml_file_name = rt_gen_xml(xml, rdnom, files, archname); //** write the file xml

xsd_file_name = rt_gen_xsd(xsd, rdnom, files, archname); //** write the file xsd

ok = build_fc2k_lib(); //** build the library for FC2K using the Makefile

Advanced concepts

42Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Synchronous and asynchronous events in Scicos

Advanced concepts

43Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Synchronous and asynchronous (events) signals

Examples :
 Keyboard
 Mouse
 Two clocks on the same MB
 Two clocks on the same Scicos diagram
 The clock and clock/17
 The clock and the clock multiplied by 56/12
 A CPU at 2.5GHz and a DDR2 RAM at 800MHz
 Two watches
 A zero crossing signal
 Two radio controlled watches
 A telephone call

Advanced concepts

44Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Synchronous and asynchronous (events) signals

In a SYNCHRONOUS system operations are coordinated under the centralized
control of a fixed-rate clock signal or a combination of harmonically linked
clocks.

An ASYNCHRONOUS system, in contrast, has no global clock: instead, it
operates under distributed “just in time” control.

Pure discrete time systems can be simulated and realized as pure synchronous
systems.

Mixed (hybrid) continuous time / discrete time systems require a mix of
synchronous and asynchronous signals.

Advanced concepts

45Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Synchronous and asynchronous events

Examples of event handling using Scicos.

Example_1 : pure discrete system

Example_2 : events from continuous systems (sync/async, zero c.)

Example_3 : sync/async CLOCKS

Example_4 : typical mistakes using CLOCKS

Example_5 : Scicos can talk to you.

Advanced concepts

46Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

The thin Red line (in Scicos)

Simple discrete time simulation (Event/Example_1.cos)

Advanced concepts

47Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Synchronous and asynchronous events
Events from a continuous
system.
(Events/Example_2.cos)

Question:

Are “Positive” and
“Zero_Crossing” sync or
async events ?

Advanced concepts

48Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

More the clocks, more the fun.

Question:

“Are you capable to
anticipate simulation
results?”

Events/Example_3.cos

Advanced concepts

49Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

There is more than one of everything (in Scicos)
Question: “Are you capable to anticipate simulation results?”
(Events/Example_4.cos)

Advanced concepts

50Simone Mannori - ENEA Brasimone Research Center (ITALY)
CEA Cadarache, June/July 2010

Scicos can talk to you
Welcome to the last circle of the “Scicos Inferno”. (Example_5.cos).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

