
Approach on Parallel I/O

A. Galonska, D. Reiser, W. Frings, P. Gibbon, F. Wolf, 
D. Borodin

 

ITM Code Camp June 2010



Outline

2

• Motivation

• Concepts
• Serial I/O in parallel codes
• Parallel I/O concept
• SIONLib

• Comparison parallel ↔ serial I/O @ ATTEMPT
• Configuration
• Comparison serial ↔ parallel I/O

• Conclusion & Outlook



3

Motivation

● Already unified data access for ITM codes (CPOs)

● Fusion related serial and parallel codes

● Workflow system KEPLER allows code coupling
● Iterations (need data as precise as possible)
● Serial data exchange of 1 to ND datasets

➔ Also for parallel codes!

➔ Parallel codes could achieve better performance when 
using parallel I/O



Concepts – serial I/O

4

p
0

p
1

p
n

...

...

p
0

storage

...

gather

serial write



Parallel I/O concept

5

p
0

p
1

p
n...

storage

...

direct access



Drawbacks of serial I/O 

6

• Huge data transfer from/to master process (gather/scatter)
• Probably in many chunks → memory issues

• Serial write of huge data amount through ONE process
➔ All other processes (probably) idle
➔ Less efficient

• No explicit use of parallel filesystems

• Limits scalability (serial fraction!)

• Restart files very expensive



SIONLib (JSC/FZJ)

7

• No library forseen for parallel I/O trough UAL
• Provides parallel I/O to “multifile”

➔ Task local I/O expensive due to creation of too many 
files
➔ File system restrictions

• Aligns output to file system blocks
➔ No deadlocks

• Access similar to POSIX I/O
• Similar to ADIOS but more simple
• Supports serial access to data
• Used by wide range of scientific codes
• Approved on JUROPA/HPC-FF, JUGENE & JAGUAR
• Will be extended to handle object related data

➔ Can be used in low level interface of UAL (?)



SIONLib
Scalable I/O Library

8



ATTEMPT

9

• ITM turbulence code

• Finite differences method (explicit)
• Velocities, densities, potentials, etc...

• 3D Mesh

• MPI parallelisation → 3D domain decomposition

• Phase VI → documented KEPLER Actor



Configuration

10

• 1000 timesteps

• Binary output of 3D mesh

• Basic conditions
• System used: JUROPA/HPC-FF
• 32 – 512 processes (4 – 64 nodes)
• Mesh: 64 x 256 x 512 = ~ 8.4 mio. cells
• Standard testbed configuration

1. Data gathered and written by master process (serial 
output)

2. Data written directly by all tasks to multifile (SIONLib)



I/O Comparison

11

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

output fraction of total time
64 x 256 x 512

Serial
SIONLib

#Tasks

fr
ac

ti
o

n



CPO Approach: Example

coreprof%rho_tor(1:N)

p
0

p
1

p
n...

storage

...

coreprof%
rho_tor(1:n)

coreprof%
rho_tor(1:n)

coreprof%
rho_tor(1:n)

High Level Interface

Low Level Interface based on SIONLib
→ localisation of right offset in DB file

storage

Distributed
coreprof%rho_tor(1:N)

n: local dimension
N: global dimension



Conclusion

• Serial output inefficient

• Fraction of I/O compared to total time very high
➔ Serial fraction
➔ Limits scalability of code
➔ Not applicable to use restart files (expensive)

• SIONLib already developed for parallel I/O
➔ Needs database extension/converter
➔ Can be used as low level interface (?)
➔ Probably no need to change the high level interface

● Users: No need to gather distributed data anymore, local 
construction of CPOs


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13

