
JRA4 work-package
Post-processing and Visualization

Brussels

30 March 2011

Scope

• Unified visualization tools

– Common to different complex codes → CPO, UAL

– Integrated into the simulation platform → Kepler

• Visualization of fusion data

– At runtime, partial results during simulation

– Post-processing, analysis after simulation

– Different visualization needs

• Simulation of tokamak discharge → different kinds of physics

• 1D, 2D, 3D and multi-dimensional datasets (>3D)

• Partners

– UDS

– UOL

Deliverables & milestones

• Milestones are associated to deliverables (MJRA4.1, MJRA4.2,
MJRA4.3, MJRA4.4) and consist in code prototype implementing
each deliverable solution

Del. no. Deliverable name Delivery date

DJRA4.1 Post-processing visualization M12 on time

DJRA4.2 Visualization actors in Kepler M18, on time

DJRA4.3 Lossy compression format M24, on time

DJRA4.4 4D-5D visualization tool M24, on time

Covering visualization needs

• Python

– Simple to learn and use

• Script based language with interpreter

• High level and object oriented programming

– Complete: many scientific packages available

• VisIt

– Based on Vtk (scientific visualization library standard)

– Simple for both users and developers

• Nice plots in a few clicks

• XML helpers tools for adding new functionalities

– Parallel capabilities

Python interface to the UAL

• Low-level interface

– Wrapper for UAL library in C

– Generated by SWIG

– Interface file for advanced uses

• High-level interface

– Hide low-level complexity

– End-user programming API

– Object oriented (CPO objects)

– Generated by XSLT
+ XML CPO description

SWIGSWIG

.i.i

ual.hual.h

wrap.cwrap.c

XSLTXSLT

.xsl.xsl

cpo.xmlcpo.xml

api.pyapi.py

Python integration into Kepler

• Implementation

– CPO and user script as input (or as parameter)

– Handle a separate Python process to execute scripts

saved in temporary files

– Executed script mixes

• automatic CPO object initialization

• user operations on those variables

VisIt interface to the UAL

• Reader plug-in

– Mostly generated by VisIt XML helper tools

– Specific part generated by XSLT using C++ UAL

interface

• Enhancement of CPO description

– Ontology proposal for mesh types

– Expert knowledge for associating data to mesh type

VisIt toolVisIt tool

.xml.xml

ual.soual.so skel.Cskel.C

makefilemakefile

XSLTXSLT

.xsl.xsl

enhanced
cpo.xml

enhanced
cpo.xml

.C.C

Reader plug-in

VisIt integration into Kepler

• VisIt generic actor

– VisitSession build above jvisit interface

– Input port:

• Data file

• Session file (restore mechanism)

– Can also open GUI in Kepler

• UAL dedicated actor

– UALVisit as a composite actor

– CPO as input (for fusion users)

High dimensional visualization

• Where lies >3D data?

– Kynetic simulation of plasma turbulence

– Phase space: space+velocity

• Challenge

– Data size, storage and memory access

– Visualization, interpretation of information

• Proposal

– Fast lossy compression library

– Interactive navigation through a set of 2D slices

Compression tool

• Scheme

– Hierarchical basis of FE

– Bloc based algorithm

– Parameterized threshold

• Implementation

– Export library in C/Fortran

– Description of parallel data
decomposition

– 2-level sparse data structure

– Disc export through
distributed HDF5 files

→ 15% to 10% remaining memory for reasonable threshold

Reconstruction tool

• Scheme

– Bloc based reconstruction

– Not yet parallelized

• Implementation

– Import library in C++

– Intensive use of templates

– Fast reconstruction of dense
2D slices

→ worst case of 10 fps = ready for interactive visualization

4D visualization tool

• Tool principle

– Linked with import library

– Build as VisIt plug-ins

• Reader: load compressed files

• Plot: own Qt rendering window

• GUI & install procedure

• Viewer implementation

– Set of 2D slices for dimension of interest

– Focus point following mouse moves

– Interactive slice refresh with FP updates

Impact on community

• Python tools widely used by ITM ☺

– Different users from all IMPs

– Simple to learn, to use and to maintain

• Few usage of VisIt tools �

– Lack of CPO XML description enhancement

– Might change with grid structure in Edge CPO ☺?

• Compression tools and 4D visualization ☺

– GYNVIZ project of HLST: post-processing data
coming from EU gyrokinetic simulation codes

Sustainability path

• External open source software

– Python and VisIt supported by their community

• UAL interfaces and Kepler actors

– Maintained by ITM for fusion community: small costs

thanks to XML automatic generation! ☺

– Generic version of actors could be taken by Kepler

community

• Compression tools and 4D visualization

– Open source (CECILL-B license)

– Maintained by UDS

Thank you!

Python user experience

• Happy fusion user: B. Faugeras (ITM)

– In a few hours (3-4 max)

– Add physics code (Equinox) into Kepler

– Interface Equinox output with Python actor

– First visualization with 1D plots

– Install Matplotlib last version (0.99.3 → 1.0.1)

– Generates advance plots thanks to
Matplotlib examples (here for triplot)

Relevance of 4D distribution functions

• Full kinetic model

– 6D = 3D in space + 3D in velocity

• Gyrokinetic model

– Considering particles motion along fields lines

– 5D = 3D in space + 2D (v//,v⊥)

• Reduced gyrokinetic model

– Introducing the adiabatic invariant µ as modulus of v⊥
– µ appears as a parameter in the equation

– 4D = 3D in space + 1D (v//) for each value of µ

