JRA4 work-package Post-processing and Visualization

Brussels 30 March 2011

IF RIA

Scope

- Unified visualization tools
 - Common to different complex codes \rightarrow CPO, UAL
 - Integrated into the simulation platform \rightarrow Kepler
- Visualization of fusion data
 - At runtime, partial results during simulation
 - Post-processing, analysis after simulation
 - Different visualization needs
 - Simulation of tokamak discharge \rightarrow different kinds of physics
 - 1D, 2D, 3D and multi-dimensional datasets (>3D)
- Partners
 - UDS
 - UOL

Deliverables & milestones

Del. no.	Deliverable name	Delivery date
DJRA4.1	Post-processing visualization	M12 on time
DJRA4.2	Visualization actors in Kepler	M18, on time
DJRA4.3	Lossy compression format	M24, on time
DJRA4.4	4D-5D visualization tool	M24, on time

 Milestones are associated to deliverables (MJRA4.1, MJRA4.2, MJRA4.3, MJRA4.4) and consist in code prototype implementing each deliverable solution

Covering visualization needs

• Python

- Simple to learn and use
 - Script based language with interpreter
 - High level and object oriented programming
- Complete: many scientific packages available
- Vislt

RIA

- Based on Vtk (scientific visualization library standard)
- Simple for both users and developers
 - Nice plots in a few clicks
 - XML helpers tools for adding new functionalities
- Parallel capabilities

Python interface to the UAL

- Low-level interface
 - Wrapper for UAL library in C
 - Generated by SWIG
 - Interface file for advanced uses
- High-level interface
 - Hide low-level complexity
 - End-user programming API
 - Object oriented (CPO objects)
 - Generated by XSLT

RIA

+ XML CPO description

Python integration into Kepler

1.5

1.0

0.5

0.0

- Implementation
 - CPO and user script as input (or as parameter)
 - Handle a separate Python process to execute scripts saved in temporary files
 - Executed script mixes
 - automatic CPO object initialization
 - user operations on those variables

VisIt interface to the UAL

Reader plug-in

JF RIA

- Mostly generated by VisIt XML helper tools
- Specific part generated by XSLT using C++ UAL interface
- Enhancement of CPO description
 - Ontology proposal for mesh types
 - Expert knowledge for associating data to mesh type

Vislt integration into Kepler

- Vislt generic actor
 - VisitSession build above jvisit interface
 - Input port:

)RI

- Data file
- Session file (restore mechanism)
- Can also open GUI in Kepler
- UAL dedicated actor
 - UALVisit as a composite actor
 - CPO as input (for fusion users)

Database

Session Filename

WorkingDir+"solps.silo"

WorkingDir+"solps.session

High dimensional visualization

- Where lies >3D data?
 - Kynetic simulation of plasma turbulence
 - Phase space: space+velocity

- Challenge
 - Data size, storage and memory access
 - Visualization, interpretation of information
- Proposal
 - Fast lossy compression library
 - Interactive navigation through a set of 2D slices

Compression tool

Scheme

2

- Hierarchical basis of FE
- Bloc based algorithm
- Parameterized threshold
- Implementation
 - Export library in C/Fortran
 - Description of parallel data decomposition
 - 2-level sparse data structure
 - Disc export through distributed HDF5 files

 \rightarrow 15% to 10% remaining memory for reasonable threshold

Reconstruction tool

4D visualization tool

- Tool principle
 - Linked with import library
 - Build as Vislt plug-ins
 - Reader: load compressed files
 - Plot: own Qt rendering window
 - GUI & install procedure
- Viewer implementation
 - Set of 2D slices for dimension of interest
 - Focus point following mouse moves
 - Interactive slice refresh with FP updates

EUFORIA FP7-INFRASTRUCTURES-2007-1 Grant 211804

Impact on community

- Python tools widely used by ITM ③
 - Different users from all IMPs
 - Simple to learn, to use and to maintain
- Few usage of Vislt tools 😕

2

- Lack of CPO XML description enhancement
- Might change with grid structure in Edge CPO ©?
- Compression tools and 4D visualization ③
 - GYNVIZ project of HLST: post-processing data coming from EU gyrokinetic simulation codes

Sustainability path

- External open source software
 - Python and VisIt supported by their community
- UAL interfaces and Kepler actors
 - Maintained by ITM for fusion community: small costs thanks to XML automatic generation! ^(C)
 - Generic version of actors could be taken by Kepler community
- Compression tools and 4D visualization
 - Open source (CECILL-B license)
 - Maintained by UDS

Thank you!

UFRIA

EUFORIA FP7-INFRASTRUCTURES-2007-1 Grant 211804

Python user experience

- Happy fusion user: B. Faugeras (ITM)
 - In a few hours (3-4 max)
 - Add physics code (Equinox) into Kepler
 - Interface Equinox output with Python actor
 - First visualization with 1D plots
 - Install Matplotlib last version (0.99.3 \rightarrow 1.0.1)
 - Generates advance plots thanks to Matplotlib examples (here for triplot)

infrastruct

Relevance of 4D distribution functions

- Full kinetic model
 - -6D = 3D in space +3D in velocity
- Gyrokinetic model

- Considering particles motion along fields lines
- 5D = 3D in space + 2D ($v_{//}, v_{\Box}$)
- Reduced gyrokinetic model
 - Introducing the adiabatic invariant μ as modulus of v_{\Box}
 - $-\mu$ appears as a parameter in the equation
 - 4D = 3D in space + 1D ($v_{//}$) for each value of μ

