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The main features of ASCOT: 

• Guiding-center orbits of test particles 
are solved by integrating the equation of 
motion over time steps in 5-dimensional 
phase space across entire poloidal cross 
section, including the wall structures.

• Effects of particle collisions and RF 
waves are modelled with Monte Carlo 
operators derived from the respective 
Fokker-Planck terms

• Er given either in analytical form or 
extracted from experimental database.

• Binary collisions can be used if 
momentum conservation is essential

• The magnetic and plasma backgrounds 
are directly extracted from the 
experimental databases (e.g. ASDEX 
Upgrade, JET, DIII-D, Wendelstein 7-X)

• Relativistic treatment of test particles 
can be used to facilitate electron studies

• Parallelized using the MPI (Message 
Passing Interface) standard

• Ideal for EGEE grid computation
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Developed in 
collaboration with 
VTT since 1991, 
ASCOT has been 
applied to numerous 
problems from 
studies of relativistic 
reverse runaway 
electrons and LH/IC 
heating & current 
drive to orbit loss 
and divertor load 
studies and 
simulations of CX 
diagnostics.

Figure: escaping
deuteron orbits at 
the edge region of 
JET (#50401, 1.6s).

The ASCOT code 
Accelerated Simulation of Charged Particle Orbits in Tori
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More recent features of ASCOT: 

• ITPA/ITM recommendations → Interface to 
experimental data using MDSPlus (AUG). 
Simulation results stored to a local MDSPlus
server starting summer 2006.

• Realistic 3D magnetic field: 
Bφ = B0{(I1-I2)/(I1+I2)}[B1(R,z)cos(N φ/2) + 

B2(R,z)cos(N φ)].
• 2D wall geometry
• Re-start option
• NBI ion birth profiles interfaced to FAFNER 

(AUG) and PENCIL (JET) codes
• Analytical models for NB ion and fusion 

alpha birth profiles
• 2D SOL background from EDGE2D or SOLPS
• CX-reactions modelled in SOL
• A numerical model for NPA
• Simulation of thermal ions facilitated by the 

calculation of a self-consistent ambipolar
radial electric field.

• Runs on several platforms:
• CSC (IBMSC and a linux cluster)
• JAC at JET
• any platform with a FORTRAN 
compiler, 2GB memory (and MPI).

The ASCOT code  …cont’d
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ASCOT was originally developed for simulating minority particles:
• run-away electrons
• fast ions
• impurity particles

Simulation of bulk ion population was later facilitated by introducing

self-consistent radial electric field, Er

evaluated from the polarization equation

∂Er/∂t = -jr, where jr is the calculated radial flux of test ions
(excluding their polarization drift).

Simulation of thermal plasma allows studies such as
• steady-state particle and heat load to the first wall and divertor
• NC radial electric field across the edge transport barrier

The simulated Er is the effective radial electric field needed to maintain a steady 
state density profile and thus, if turbulence plays a role in the generation of Er
the measured values may be different.

Simulation of Bulk Plasma
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Isotope effect Varying BT

Varying T Varying n

NC level

NC radial current balance in a divertor tokamak (AUG, JET) gives shearing 
rate (dEr/dt)/BT high enough for strong turbulence suppression (BDT 
criterium) at parameter values corresponding to L-H transition.

'BASE' refers to JET L-H transition conditions.

ExB flow from ASCOT simulation as a function of
experimental parametrisation of Tcrit of L-H transition
for ASDEX Upgrade.
Experimental Tcrit is shown as a straight line

J. Heikkinen et al. PRL 84 (2000) 487
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• Mitigation of Type I ELMs is a necessity for ITER
• ELMs are localized to the LFS where transport is enhanced by ripple
• Across the H-mode pedestal anomalous transport is suppressed

→ Maybe ripple can be used to tailor ELM behaviour?
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Heat diffusion can be evaluated from 

•variance growth of δ-peak in radius
→pulse-spreading technique

or

• from the energy-weighted radial 
motion of the particle ensemble

Thermal conductivity using 
pulse-spreading technique for 
different ripple values

Heat flux from full simulation for different ripple values 
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Divertor load studies
for JET & ITER

Main results:

Many factors affect the divertor
loads and their distribution on 
the targets, e.g.:

• edge collisionality
• scrape-off layer (SOL) 
collisionality
• divertor collisionality
• SOL radial electric field

Orbit losses from the edge
cannot alone explain the 
experimentally observed load
distributions.

Effect of 
pedestal
height:

(a)  n pedestal
(b)  T pedestal

As expected,
the loads
scale linearly
with n pedestal
height, but the  T
pedestal has a 
much stronger

Effect of
pedestal
width:

(a)  n pedestal
(b)  T pedestal

The energy of
the escaping
ions (b) has a 
dramatic effect
on target loads!

effect through
SOL & divertor collisionality.
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Finite number of toroidal coils →
• magnetic ripple →

• increased diffusion & direct orbit losses
Presence of fast ions (neutral beams, ICRH, 
fusion reactions) →

• unacceptable local fluxes to plasma-facing
components?
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ASCOT simulations of 3.5MeV fusion alphas
indicate that with plasma current
manipulation (reversed central magnetic
shear) a better utilization of fusion fuel can
be obtained

Fast ions: fusion alphas
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NPA Simulations

NBI tail distributions Simulated NPA signal

Neutral Particle Analyzer (NPA) simulation model: 
• horizontal and vertical sightline adjustment
• multiple energy channels
• realistic viewing aperture.

Currently benchmarked against dedicated shots on AUG

NBI/NPA simulations →
use of NPA signal for 
determining central Ti is 
feasible but sensitive to 
NPA viewing angle. 

NBI ion energy tail slope
indicates background Ti
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• New ions are born steadily 
throughout the simulation. 

• The signal response time is 
about 50 μs to the field 
onset.
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Time evolution of the neutral flux with an abrupt 
onset of Er = -d/dr [ V0 exp(-r2/re

2) ]  at t =3ms.

In the edge pedestal region, in the presence of a finite toroidal
ripple, the NPA signal due to NBI ions is found sensitive to the
radial electric field which can re-confine the ripple-blocked ions 
drifting out of the plasma.

Edge Er from NPA measurements
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Rule of thumb for optimal 
sensitivity:
• view the plasma along 

the mid-plane
Fine-tuning:

– Non-shaped plasmas: 
view the plasma 
slightly above the 
midplane (AUG # 
8044)

– strong plasma 
shaping: view from 
below the midplane
(DIII-D # 82093)0 5 10 15
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NBI/NPA simulations → use of NPA signal for determining edge Er is 
feasible but sensitive to plasma shaping and NPA viewing angle. 
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φ = 0°

φ = 18°
φ = 36°

ASCOT has been upgraded to handle also
toroidally non-symmetric configuratons:  in the 
case of W7X the torus is divided to 5 
symmetrical segments

The first step towards ITER magnetic configuration
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• 2D background from SOLPS or EDGE2D imported to 
ASCOT (MDSPlus tree)

• Due to open field lines, special care must be taken with 
the Monte Carlo collisions

• Kinetic electrons from the main plasma arrive
– at the outer divertor with practically undistorted 

Maxwellian distribution,
– with significantly lower energies at the inner target
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The current/future development projects for ASCOT include:

• Tailoring the ASCOT input/output interfaces to facilitate ITM compatibility
• 3D magnetic background and 3D wall structures for ITER
• 2D electric field in the scrape-off layer (INTAS project)
• Extending the CX-reaction model and simulation of neutrals all across the 

poloidal plane
– Upgrade all plasma-profiles to 2D when relevant
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