

Plasma fuelling in JET ELMy H-mode: role of neutral dynamics and edge particle transport

Alberto Loarte European Fusion Development Agreement Close Support Unit - Garching

Contributions from : R. Sartori, G. Saibene, A. Kukushkin, H. Pacher and G.W. Pacher

Alberto Loarte

Fuelling of the core plasma in ITER does not seem an easy job

- With increasing device size and power into the SOL plasmas are hotter and it is more difficult for neutrals to penetrate to the plasma core
- A minimum core outflux is required for maintaining He concentration within reasonable bounds

ITER can only achieve its reference performance by pellet fuelling

- Are these findings consistent with experimental evidence from Type I ELMy H-modes in present experiments ?
- Can we test in ITER-like conditions in present experiments the models and assumptions to model ITER to see if they describe correctly what is seen ?

- Review of particle balance and fuelling requirements in ITER
- Review of existing experimental and modelling studies concerning particle transport at high density and/or in ELMy H-modes
- Experimental evidence concerning fuelling of JET ELMy H-modes
- Open questions

Particle Fluxes and Plasma Fuelling in ITER (I)

Close Support Unit - Garching

Fuelling objectives and constraints

- (1) To maintain the plasma density in the core
 - partly accomplished via gas puff (n_s, Γ_{DT})
 - will require core fuelling (Γ_{core})
- (2) To replenish the fuel pumped with helium
 - could in principle be accomplished via gas puff (Γ_{DT})
- (3) To control the D-T composition in the core
 - will probably require core fuelling
 - to be studied yet
- ⇒ Major constraint: all the particles delivered by fuelling must be pumped out
 - pumping throughput is limited ($\Gamma_{DT} + \Gamma_{core}$)

⇒ gas influx accompanying core fuelling might be a concern

➢ He production for ITER Q_{DT} = 10 reference regime ~ 1.8 10²⁰ s⁻¹ $n_{He}/n_{D}|_{core} ~ 5 \% & \eta_{He} = n_{He}/n_{D}|_{divertor} / n_{He}/n_{D}|_{core} ~ 0.1$ \downarrow $n_{He}/n_{D}|_{divertor} ~ 0.5 \% → \Gamma_{D.core}^{pumped} = 3.6 \ 10^{22} \ s^{-1} = 67 \ Pa \ m^{3} \ s^{-1}$

Pedestal Physics Working Session – CEA Cadarache

Alberto Loarte

Pedestal Physics Working Session - CEA Cadarache

Core fuelling of ITER

Rough estimate:

$$\begin{split} S_{sep} &\sim 700 \text{ m}^2, \, \Delta_{ped} \sim 0.1 \text{ m}, \, D_{ped} \sim (0.03 \text{ to } 0.1) \text{ m}^2/\text{s} \\ n_{core} &\sim 10^{20} \text{m}^{-3}, \, n_s \sim 3 \ 10^{19} \text{m}^{-3}, \, T_{ped} \sim 4 \text{ keV} \\ \Gamma_{DT_p} &= \Gamma_{DT_s} \exp(-\Delta_{ped}/\lambda_{ped}) \sim 3 \ 10^{21} \text{ s}^{-1} \\ \Gamma_{He} &<< \Gamma_{DT_p} \\ \Gamma_{ped} &= S_{sep} \ D_{ped}(n_{ped} - n_s) \ / \ \Delta_{ped} \sim (1.5 \text{ to } 5) \ 10^{22} \text{ s}^{-1} \end{split}$$

 \Rightarrow $\Gamma_{\rm core} \sim (1.2 \text{ to } 4.7) \ 10^{22} \text{ s}^{-1} \sim (25 \text{ to } 90) \text{ Pa m}^{3/s}$

 $n_{core} \qquad n_{ped}$ $\Gamma_{DT_p} + \Gamma_{core}$ $(-2 \Gamma_{He})$ $\Gamma_{DT_p} \qquad \Gamma_{DT_s} \qquad n_s$ Δ_{ped}

Typically $\Gamma_{DT_p} \sim 40\% \Gamma_{DT_s} \sim 5 \text{ Pa m}^3 \text{ s}^{-1} \rightarrow \text{missing} \sim 50 \text{ Pa m}^3 \text{ s}^{-1}$ by pellets

Tails in SOL n_e profiles are seen in various divertor tokamaks (AUG, C-mod)

is this due to transport enhancement at low Te (large v_e^*) or neutral ionisation ?

Experimental and modelling studies of particle transport (II)

Neutral ionisation can explain some features of edge n_e profiles

but detailed modelling of n_e profiles still requires some important assumptions on anomalous transport

if there exists an inwards pinch close to the separatrix in H-mode \rightarrow core fuelling of ITER would be possible $n_{sep} = 3 \ 10^{19} \text{ m}^{-3}$, $v_{pinch} = 5 \ \text{ms}^{-1} \rightarrow \Gamma_{D^+,sep}^{in} = 1.0^{23} \ \text{s}^{-1}$

in H-modes $< n_e >$ is not a free parameter : $> < n_e > \sim |_p$ even when $\phi_{gas} \sim 0$ $> n_{ped}$ can be changed with gas puffing only by $\sim 30\%$

dN/dt between ELMs in unfuelled Type I H-modes weakly dependent on

 $dN/dt = S_{core} - N/\tau_{p}$

If ionisation dominates core influx $\rightarrow S_{core} \sim n^{\alpha} \exp(-d/\lambda_{ion}) \sim n_{SOL}^{\alpha} \exp(-dn_{SOL}^{\beta} < \sigma v >_i/v_o)$ (α = β =1 main chamber source, α = 2, β =3 high recycling divertor source) Going from 1 to 3 MA if $\lambda_{SOL} \sim \text{constant} \rightarrow S_{core} \downarrow 10$ but N $\uparrow 3 \rightarrow \tau_p \sim I_p^{\gamma}$ with $\gamma > 1$

Fuelling JET Type I ELMy H-modes by (divertor) gas puffing is as effective at low and high currents

- $\blacktriangleright \phi_{gas} \sim N_{plasma} \text{ independent of } I_p$
- Gas "fuelling efficiency"
 - \checkmark decreases with n_e at fixed I_p (as expected from λ_{ion})

 \checkmark increases with $\rm I_p$ for same $\rm n_{ped}$ \rightarrow influence of recycling and transport

No sign of non-linear enhancement of φ_{wall} with n_{ped} at high n_{ped} & n_{ped}/n_{GW} unlike C-mod, ASDEX Upgrade (?)

➢ Only weak decrease of fuelling efficiency with n_{ped} & positive trend with I_p➢ For I_p ~ 3 - 3.5 MA → n_{ped} JET > n_{ped} ITER and T_{ped} JET = 1.0 - 1.5 keV

Particle balance in JET ELMy H-modes (V)

SOL n_e profiles change little with I_p and n_e (for fixed I_p)

no clear evidence for enhanced ionisation and/or transport even for $n_{ped} \sim 10^{20} \text{ m}^{-3} \text{ T}_{ped} \sim 1 \text{ keV} (I_p > 3 \text{MA})$

Alberto Loarte

Close Support Unit - Garching

Pedestal Physics Working Session – CEA Cadarache

Divertor fluxes in JET ELMy H-modes are usually > ϕ_D and in/out

Role of divertor source versus main chamber source on fuelling of JET ELMy H-modes requires quantification can this explain JET/ITER difference ??

Alberto Loarte

Gas fuelling of high density H-modes is expected to become ineffective with device size (particularly in ITER) due to SOL ionisation effects

Fuelling of JET ELMy H-modes do not apparently back such expectations when comparing HT3 discharges 1 to 3.5 MA

Reasons are not clear :

JET SOL opacity to neutrals could be insufficient to see effect

- Edge particle transport description by D_{perp} is too simplistic
- II SOL flows affect particle transport and neutral penetration

Given potential simplification of ITER operations detailed measurements at JET & modelling are required to determine if standard 2-D modelling explains particle balance in H-modes