# Role of zonal flows and magnetic fields in turbulence regulation and the formation of transport barrier

**Eun-jin Kim** Department of Applied Mathematics, University of Sheffield, Sheffield, UK

April 3 2006

# L-mode

• Anomalous transport due to microscale turbulence

$$D_T \sim \chi_T \sim \nu_T \sim \frac{\gamma}{k_\perp^2}$$

- Particle flux  $\langle nv_x \rangle = -D_T \partial_x \langle n \rangle$
- Heat flux  $\langle Tv_x \rangle = -\chi_T \partial_x \langle T \rangle$
- Momentum flux  $\langle v_x v_y \rangle = -\nu_T \partial_x \langle U_y \rangle$

Here,  $D_T$ ,  $\chi_T$ , and  $\nu_T$  are transport coefficients [turbulent particle and heat diffusivities, and eddy viscosity]

• cf:  $D_T \sim \chi_T \sim \nu_T \sim v l \sim \tau_c l^2$ 

### L-H transition

Stabilization of turbulence and reduction in transport

 $\Leftrightarrow$  How  $D_T$ ,  $\chi_T$ , and  $\nu_T$  are affected by  $\mathbf{E} \times \mathbf{B}$  shear flows and magnetic fields??

 $\Leftrightarrow \gamma$ ,  $k_{\perp}$  (v, l,  $\tau_c$ ) are dynamical quantities!

<u>NOTE</u>: intermittent transport due to coherent structures (e.g. streamers, blobs, etc)  $\Rightarrow$  PDFs are required (e.g. Kim & Diamond PRL 03)

#### Role of $\mathbf{E} \times \mathbf{B}$ shear flows on transition

RZFs trigger transition while mean flows maintains H-mode [Kim & Diamond PRL 03]

• Mean flow (coherent shearing)

$$\langle V_E \rangle = \langle V_\theta \rangle - \frac{B_\theta}{B} \langle V_\phi \rangle - \frac{1}{eB_z n} \frac{\partial p_i}{\partial r} + \tau$$

- Zonal flows (ZFs)
  - Random ZFs (RZFs): low-frequency ( $\omega_z \sim 0, \Delta \omega_z \sim 5$ kH)

$$\partial_t \phi_{ZF} = \langle \tilde{v}_x \tilde{v}_y \rangle - \nu \phi_{ZF}$$

- Oscillatory ZFs (OZFs): high-frequency



- Quantitative prediction for  $D_T$ ,  $\chi_T$  and  $\nu_T$  due to these shear flows
  - Scalings of flux  $\Gamma$  with shearing rate [ $\Gamma\propto\Omega^{-\alpha}$  with  $2\lesssim\alpha\lesssim3.6$  (Boedo et al 02)]
  - Model dependence of results: stronger reduction in dynamical models [Kim et al 03,04,05]
  - Reduction in transport vs fluctuation levels:  $\Gamma = \langle nv_x \rangle = \sqrt{\langle n^2 \rangle} \sqrt{\langle v_x^2 \rangle} \cos \delta_n$  (cross-phase  $\cos \delta_n$ )

Effects of magnetic fluctuations for finite  $\beta$  plasmas

- Generation of zonal fields [Guzdar et al 01, Gruzinov et al 03]
- Alfvenization  $\Leftrightarrow$  increase in the memory time  $\tau_c$
- $\Rightarrow$  Quench transport but not necessarily fluctuation levels
- $\Rightarrow$  Reduction in the growth of RZFs?  $\langle v_x v_y b_x b_y \rangle = -\nu_T \langle U_y \rangle$

 $\Rightarrow$  Reduction in  $\chi_T$ ,  $D_T$  vs  $\nu_T$ ?  $\Leftrightarrow$  disparate transport of particles and momentum

## Outline

- 1. Effects of shear flows on fluctuation levels (enhanced dissipation)
- 2. Effects of shearing on transport (passive scalar field model with OZFs)
- 3. Effects of magnetic fields in 3D RMHD
- 4. Conclusions/discussion



• Rapid generation of fine scales due to eddy distortion by shear flows

$$k_x(t) = k_x(0) + k_y \int^t \Omega(t') dt' \quad [\mathbf{U} = -x\Omega(t)\hat{y}]$$

 $\Rightarrow$  Reduction in fluctuation levels

1. Coherent shearing with constant  $\Omega$  ( $k_x^2 \propto t^2$ )

$$Q = D \int^{t} dt' k_x^2(t') \propto Dk_y^2 \Omega^2 t^3, \quad \tau_{\Delta} = (\tau_{\eta} / \Omega^2)^{1/3} \quad [\tau_{\eta} = 1/Dk_y^2]$$

2. Random shearing by RZFs (finite  $\tau_{ZF}$ ,  $k_x^2 \propto t$ )

$$Q \propto Dk_y^2 \tau_{ZF} \Omega_{rms}^2 t^2$$
,  $\tau_D = (\tau_\eta / \tau_{ZF} \Omega_{rms}^2)^{1/2} = (\tau_\eta / \Omega_{eff})^{1/2}$ 

3. Coherent shearing by OZFs ( $\Omega(t) = -\Omega_m \sin \omega_z t$ ) for  $\Omega_m \gg \omega_z$ 

$$Q \propto D[k_y^2(1 + \Omega_m^2/\omega_z^2) + k_x^2]t, \ \tau_* = \tau_\eta \omega_z^2/\Omega_m^2$$

$$\Rightarrow \quad \tau_{\Delta} \lesssim \tau_{D} \lesssim \tau_{*} \quad \text{for } \Omega_{m} > \omega_{z} > \tau_{ZF}^{-1} > \tau_{\eta}^{-1}$$

**II.** Transport of passive scalar fields

**Transport**  $\Leftrightarrow$  **Irreversibility** (dissipation, stochasticity)

I. Wave dominated background ( $\omega \gg \gamma$ )

⇔ Dissipation, resonance/critical layers

- Mean flow: resonance  $\omega U_0 k = 0$  with  $D_T \propto \Omega$  [Kim & Diamond 03]
- RZFs: resonance broadening with  $D_T \propto \Omega_{rms}$  [Kim & Diamond 04]
- OZFs: resonance  $\omega n\omega_z = 0$  (*n* integer) with  $D_T \propto \Omega_m$  [Kim 06]
- II. Turbulence dominated background ( $\omega \ll \gamma$ )  $\Leftrightarrow$  Stochasticity

 $\Rightarrow$  No effect of mean shearing on transport (no time for shearing to act)

#### Transport of passive scalar field $\boldsymbol{n}$ with OZFs

#### [Kim PoP 06]

$$(\partial_t + \mathbf{u} \cdot \nabla)n = D\nabla^2 n$$

- Quasi-linear analysis:  $\mathbf{u} = \mathbf{U} + \mathbf{v}$ ,  $n = n_0(x) + n'$ 
  - $\cdot$  v: Given (prescribed) turbulent flow
  - $\cdot U(x,t) = -x\Omega(t)$  with  $\Omega(t) = \Omega_m \sin \omega_z t$  [OZFs]
- $\bullet$  Solve for fluctuation for a given  $\mathbf v$

$$(\partial_t - x\Omega\partial_y)n' = -v_x\partial_x n_0 + D\nabla^2 n'$$

Let

$$n'(\mathbf{x},t) = \frac{1}{(2\pi)^3} \int d^3k \tilde{n}(\mathbf{k},t) e^{i(k_x(t)x + k_y y + k_z z)}$$

where

$$k_x(t) = k_x(0) + k_y \int^t dt_1 \Omega(t_1)$$

and similarly for  $\ensuremath{\mathbf{v}}$ 

• Compute 
$$\langle n'^2 \rangle, \langle n'v_x \rangle = -D_T \partial_x n_0$$
 by using

$$\langle \tilde{v}_x(\mathbf{k}_1, t_1) \tilde{v}_x(\mathbf{k}_2, t_2) \rangle = (2\pi)^2 \delta(\mathbf{k}_1 + \mathbf{k}_2) \psi(\mathbf{k}_2) \int \frac{d\omega'}{\pi} \frac{\gamma e^{-i\omega'(t_2 - t_1)}}{[(\omega' - \omega)^2 + \gamma^2]}$$

where  $\omega > \gamma$ 

$$\tau_\eta \gg \Omega_m / {\omega_z}^2 (k_y x)$$
:

$$\langle \langle n'v_x \rangle \rangle_T \sim -\frac{\partial_x n_0}{(2\pi)^2} \int d^2k \psi(\mathbf{k}) \sum_{n=-\infty}^{\infty} J_n^2(\beta) \frac{\gamma + \mu}{(-n\omega_z + \omega)^2 + (\gamma + \mu)^2}$$

$$\langle \langle n'^2 \rangle \rangle_T \sim \frac{(\partial_x n_0)^2}{(2\pi)^2} \int d^2 k \psi(\mathbf{k}) \sum_{n=-\infty}^{\infty} J_n^2(\beta) 2\tau_* \frac{\gamma + \mu}{(-n\omega_z + \omega)^2 + (\gamma + \mu)^2}$$
  
where  $\beta = k_y x \Omega_m / \omega_z$ ,  $\mu = Dk_1^2 (1 + \Omega_m^2 / \omega_z^2)$ ,  $\tau_\eta = 1/Dk^2$ 

For  $\beta \gg 1$ :

$$\langle \langle n' v_x \rangle \rangle_T \propto \frac{1}{|k_y U_m|}, \langle \langle n'^2 \rangle \rangle_T \propto \frac{\tau_*}{|k_y U_m|},$$

where  $\tau_* = \tau_\eta {\omega_z}^2 / \Omega_m^2 < \tau_\eta$ ,  $U_m = x \Omega_m$  is the amplitude of U





Figure 1: alpha= $\Omega_m/\omega_z, \omega/\omega_z = 10$  $\Rightarrow$  OZFs reduce transport as  $\Omega_m^{-1}$  for  $\Omega_m \gg \omega_z$  ( $\tau_* < \tau_\eta$ )





Figure 2: alpha= $\Omega_m/\omega_z, \omega/\omega_z = 0$ 

 $\Rightarrow$  OZFs reduce transport for  $\Omega_m < \omega_z$  ( $au_* \sim au_\eta$ ) [cf mean flow]



 $\bullet$  Assume stationary mean shear flow U(x) and turbulence dominated background with  $\omega \ll \gamma$ 

$$\begin{aligned} (\partial_t + \mathbf{u} \cdot \nabla) \omega &= -(\mathbf{B} \cdot \nabla) \nabla_{\perp}^2 a + \nu \nabla^2 \omega + F \\ (\partial_t + \mathbf{u} \cdot \nabla) a &= B_0 \partial_z \psi + \eta \nabla^2 a \\ (\partial_t + \mathbf{u} \cdot \nabla) n &= D \nabla^2 n \,. \end{aligned}$$

• 
$$n = n_0 + n'$$
,  $\mathbf{B} = B_0 \hat{z} + \mathbf{b'}$ ,  $\mathbf{U} = U(x)\hat{y} + \mathbf{u'}$ ,

• 
$$\mathbf{b}' = \nabla \times a\hat{z} = (\partial_y a, -\partial_x a)$$
,  $\omega = -\nabla_{\perp}^2 \phi$ ,  $\omega \hat{z} = \nabla_{\perp} \times \mathbf{u} = (\partial_x u'_y - \partial_y u'_x)\hat{z}$ 

• Solve for  $\hat{\omega}$ ,  $\hat{a}$ , and  $\hat{n}$  in terms of forcings:

$$\langle \tilde{F}(\mathbf{k}, t_1) \tilde{F}(\mathbf{k}', t_2) \rangle = \tau_f \delta(t_2 - t_1) \delta(\mathbf{k} + \mathbf{k}') \hat{\phi}(\mathbf{k})$$

• Compute  $\nu_T$  and  $D_T$  via  $\langle n'u'_x \rangle = -D_T \partial_x n_0$  and  $\langle u'_x u'_y - b'_x b'_y \rangle = -\nu_T \partial_x U_0$ 

In the limit of strong shear and magnetic fields:  $\xi \equiv \nu k^2 / \Omega \ll 1$ ,  $B_0 k_z / \Omega \gg 1$  ( $\Omega = -\partial_x U_0$ ,  $k = k_y$ )

$$D_T \sim \nu \xi^{\frac{2}{3}} \frac{v^2}{\mu^2 B_0^2} < \nu_T, \qquad \nu_T \sim \nu \frac{v^2}{\mu^2 B_0^2}$$
$$\frac{\langle n'^2 \rangle}{(\partial_x n_0)^2} \sim \xi \frac{v^2}{k_z^2 B_0^2}, \qquad \langle u'_x^2 \rangle \sim \frac{\xi v^2}{\mu^2}$$

where  $v^2 = \tau_f \langle F^2 \rangle / \nu k^4$  and  $\mu = k_z / k_H$ 

- $B_0$  and  $\Omega$  both reduce turbulent transport and amplitude in general
- $B_0$  does not reduce  $\langle u'^2 \rangle$

 $\Rightarrow$  More severe reduction in transport than amplitude for strong  $B_0$ 

 $\Rightarrow$  Normalized transport: Cross phase

$$\cos \delta = \frac{\langle n' u'_x \rangle}{\sqrt{\langle n'^2 \rangle \langle u'^2_x \rangle}} \sim \left(\frac{Dk^2}{\Omega}\right)^{\frac{2}{3}} \left(\frac{\Omega}{B_0 k}\right) < 1$$

• Disparity in  $D_T$  and  $\nu_T$ 

$$\frac{D_T}{\nu_T} \sim \left(\frac{Dk^2}{\Omega}\right)^{\frac{2}{3}} \ll 1$$

 $\Rightarrow$  More efficient transport of momentum than particles!

### Stationary magnetic fields $D_t \hat{a} = 0$

**EXACT** solutions for  $\xi = Dk^2/\Omega \ll 1$ :

$$\nu_T \sim -\xi \frac{v^2}{\Omega} \left[ I_1(\alpha) - \left(\frac{B_0 \mu}{\eta k}\right)^2 I_2(\alpha) \right] < 0$$

$$D_T \sim \xi \frac{v^2}{\Omega} I_3(\alpha)$$

$$\frac{\langle n'^2 \rangle}{(\partial_x n_0)^2} \sim \xi \frac{v^2}{\Omega^2} I_4(\alpha)$$

$$\langle u'_x^2 \rangle \sim \xi v^2 I_5(\alpha)$$

Here,  $v^2 = \tau_f \langle F^2 \rangle / \nu k^4$ ,  $\alpha = B_0^2 \mu^2 / \eta \Omega$ ,  $\mu = k_z / k_H$ ;  $I_i$ 's are monotonically decreasing functions of  $\alpha$ 

• Comparison between  $\nu_T$  ( $I_1, I_2$ ) and  $D_T$  ( $I_3$ )



 $\Rightarrow$  More reduction in  $D_T$  than  $\nu_T$ 

 $\Rightarrow D_T$  can still be reduced in spite of the reduction in  $\nu_T$ 





 $\Rightarrow$  Reduction in cross-phase due to magnetic fields

 $\Rightarrow$  Possibility of significant reduction in transport without much reduction in fluctuation levels

### **IV Conclusions**

• For strong shear  $\Omega_m \gg \omega_z$ , OZFS reduces transport as  $\Omega_m^{-1}$  the effective decorrelation time  $\tau_* = \tau_\eta {\omega_z}^2 / \Omega_m^2 < \tau_\eta$ 

 $\Rightarrow$  Turbulence regulation by OZFs less efficient than by RZFs?

- For  $\omega \ll \gamma, \omega_z$ ,  $\tau_* \sim \tau_\eta$ ; OZFs reduces transport even for  $\Omega_m < \omega_z$
- For strong shear,  $\langle n'^2 \rangle \propto \tau_{eff} \langle n' v_x \rangle$  for  $\tau_{eff} = \tau_{\Delta}, \tau_D, \tau_*$
- Reduction in transport without much reduction in fluctuation levels due to magnetic fields
- Magnetic fields can facilitate barrier formation
- Origin and properties of forcings and their effects on transport?
- Transport in more realistic RMHD models with toroidal effects?

- Generation of zonal magnetic fields (dynamos)?
- Effects of magnetic fields (e.g. tearing modes) on particle/heat pinch?