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L-mode

• Anomalous transport due to microscale turbulence

DT ∼ χT ∼ νT ∼
γ

k2
⊥

− Particle flux 〈nvx〉 = −DT∂x〈n〉

− Heat flux 〈Tvx〉 = −χT∂x〈T 〉

− Momentum flux 〈vxvy〉 = −νT∂x〈Uy〉

Here, DT , χT , and νT are transport coefficients [turbulent particle
and heat diffusivities, and eddy viscosity]

• cf: DT ∼ χT ∼ νT ∼ vl ∼ τcl
2
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L-H transition

Stabilization of turbulence and reduction in transport

⇔ How DT , χT , and νT are affected by E × B shear flows and
magnetic fields??

⇔ γ, k⊥ (v, l, τc) are dynamical quantities!

NOTE: intermittent transport due to coherent structures (e.g.
streamers, blobs, etc) ⇒ PDFs are required (e.g. Kim & Diamond
PRL 03)

2



Role of E×B shear flows on transition

RZFs trigger transition while mean flows maintains H-mode [Kim &
Diamond PRL 03]

• Mean flow (coherent shearing)

〈VE〉 = 〈Vθ〉 −
Bθ

B
〈Vφ〉 −

1

eBzn

∂pi

∂r
+ τ

• Zonal flows (ZFs)

– Random ZFs (RZFs): low-frequency (ωz ∼ 0,∆ωz ∼ 5kH)

∂tφZF = 〈ṽxṽy〉 − νφZF

– Oscillatory ZFs (OZFs): high-frequency
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ω
OZF RZF OZF

• Quantitative prediction for DT , χT and νT due to these shear flows

– Scalings of flux Γ with shearing rate [Γ ∝ Ω−α with 2 <
∼ α <

∼ 3.6
(Boedo et al 02)]

– Model dependence of results: stronger reduction in dynamical
models [Kim et al 03,04,05]

– Reduction in transport vs fluctuation levels: Γ = 〈nvx〉 =
√

〈n2〉
√

〈v2
x〉 cos δn (cross-phase cos δn)
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Effects of magnetic fluctuations for finite β plasmas

• Generation of zonal fields [Guzdar et al 01, Gruzinov et al 03]

• Alfvenization ⇔ increase in the memory time τc

⇒ Quench transport but not necessarily fluctuation levels

⇒ Reduction in the growth of RZFs? 〈vxvy − bxby〉 = −νT 〈Uy〉

⇒ Reduction in χT , DT vs νT? ⇔ disparate transport of particles
and momentum
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Outline

1. Effects of shear flows on fluctuation levels (enhanced dissipation)

2. Effects of shearing on transport (passive scalar field model with
OZFs)

3. Effects of magnetic fields in 3D RMHD

4. Conclusions/discussion
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I. Enhanced dissipation due to shearing

EV (x)

x (r)

y
(θ)

Ωx xk  (t) = k  (0) +      t

• Rapid generation of fine scales due to eddy distortion by shear flows

kx(t) = kx(0) + ky

∫ t

Ω(t′)dt′ [U = −xΩ(t)ŷ]

⇒ Reduction in fluctuation levels
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1. Coherent shearing with constant Ω (k2
x ∝ t2)

Q = D

∫ t

dt′k2
x(t′) ∝ Dk2

yΩ
2t3, τ∆ = (τη/Ω

2)1/3 [τη = 1/Dk2
y]

2. Random shearing by RZFs (finite τZF , k2
x ∝ t)

Q ∝ Dk2
yτZFΩ2

rmst
2, τD = (τη/τZFΩ2

rms)
1/2 = (τη/Ωeff)1/2

3. Coherent shearing by OZFs (Ω(t) = −Ωm sinωzt) for Ωm � ωz

Q ∝ D[k2
y(1 + Ω2

m/ωz
2) + k2

x]t, τ∗ = τηωz
2/Ω2

m

⇒ τ∆ <
∼ τD <

∼ τ∗ for Ωm > ωz > τ−1
ZF > τ−1

η
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II. Transport of passive scalar fields

Transport ⇔ Irreversibility (dissipation, stochasticity)

I. Wave dominated background (ω � γ)

⇔ Dissipation, resonance/critical layers

• Mean flow: resonance ω − U0k = 0 with DT ∝ Ω [Kim & Diamond 03]

• RZFs: resonance broadening with DT ∝ Ωrms [Kim & Diamond 04]

• OZFs: resonance ω − nωz = 0 (n integer) with DT ∝ Ωm [Kim 06]

II. Turbulence dominated background (ω � γ) ⇔ Stochasticity

⇒ No effect of mean shearing on transport (no time for shearing to
act)
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Transport of passive scalar field n with OZFs

[Kim PoP 06]

(∂t + u · ∇)n = D∇2n

• Quasi-linear analysis: u = U + v, n = n0(x) + n′

· v: Given (prescribed) turbulent flow

· U(x, t) = −xΩ(t) with Ω(t) = Ωm sinωzt [OZFs]

• Solve for fluctuation for a given v

(∂t − xΩ∂y)n
′ = −vx∂xn0 +D∇2n′
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Let

n′(x, t) =
1

(2π)3

∫

d3kñ(k, t)ei(kx(t)x+kyy+kzz)

where

kx(t) = kx(0) + ky

∫ t

dt1Ω(t1)

and similarly for v

• Compute 〈n′2〉, 〈n′vx〉 = −DT∂xn0 by using

〈ṽx(k1, t1)ṽx(k2, t2)〉 = (2π)2δ(k1 + k2)ψ(k2)

∫

dω′

π

γe−iω′(t2−t1)

[(ω′ − ω)2 + γ2]

where ω > γ
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τη � Ωm/ωz
2(kyx):

〈〈n′vx〉〉T ∼ −
∂xn0

(2π)2

∫

d2kψ(k)
∞
∑

n=−∞

J2
n(β)

γ + µ

(−nωz + ω)2 + (γ + µ)2

〈〈n′2〉〉T ∼
(∂xn0)

2

(2π)2

∫

d2kψ(k)
∞
∑

n=−∞

J2
n(β)2τ∗

γ + µ

(−nωz + ω)2 + (γ + µ)2

where β = kyxΩm/ωz, µ = Dk2
1(1 + Ω2

m/ωz
2), τη = 1/Dk2

For β � 1:

〈〈n′vx〉〉T ∝
1

|kyUm|
, 〈〈n′2〉〉T ∝

τ∗
|kyUm|

,

where τ∗ = τηωz
2/Ω2

m < τη, Um = xΩm is the amplitude of U
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• ω � ωz (resonance where ω = nωz):

Figure 1: alpha= Ωm/ωz, ω/ωz = 10

⇒ OZFs reduce transport as Ω−1
m for Ωm � ωz (τ∗ < τη)
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• ω � ωz (no resonance):

Figure 2: alpha= Ωm/ωz, ω/ωz = 0

⇒ OZFs reduce transport for Ωm < ωz (τ∗ ∼ τη) [cf mean flow]
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III. 3D RMHD

[Kim, PRL 06]

 z

B 0

y

x
U(x)

B0

U(r)

• Assume stationary mean shear flow U(x) and turbulence dominated
background with ω � γ
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(∂t + u · ∇)ω = −(B · ∇)∇2
⊥
a+ ν∇2ω + F

(∂t + u · ∇)a = B0∂zψ + η∇2a

(∂t + u · ∇)n = D∇2n .

• n = n0 + n′, B = B0ẑ + b
′, U = U(x)ŷ + u

′,

• b
′ = ∇×aẑ = (∂ya,−∂xa), ω = −∇2

⊥
φ, ωẑ = ∇⊥×u = (∂xu

′
y−∂yu

′
x)ẑ

• Solve for ω̂, â, and n̂ in terms of forcings:

〈F̃ (k, t1)F̃ (k′, t2)〉 = τfδ(t2 − t1)δ(k + k
′)φ̂(k)

• Compute νT and DT via 〈n′u′x〉 = −DT∂xn0 and 〈u′xu
′
y − b′xb

′
y〉 =

−νT∂xU0
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In the limit of strong shear and magnetic fields:

ξ ≡ νk2/Ω � 1, B0kz/Ω � 1 (Ω = −∂xU0, k = ky)

DT ∼ νξ
2
3
v2

µ2B2
0

< νT , νT ∼ ν
v2

µ2B2
0

〈n′2〉

(∂xn0)2
∼ ξ

v2

k2
zB

2
0

, 〈u′
2
x〉 ∼

ξv2

µ2

where v2 = τf〈F
2〉/νk4 and µ = kz/kH

• B0 and Ω both reduce turbulent transport and amplitude in general

• B0 does not reduce 〈u′2〉

⇒ More severe reduction in transport than amplitude for strong B0

17



⇒ Normalized transport: Cross phase

cos δ =
〈n′u′x〉

√

〈n′2〉〈u′2x〉
∼

(

Dk2

Ω

)
2
3
(

Ω

B0k

)

< 1

• Disparity in DT and νT

DT

νT
∼

(

Dk2

Ω

)
2
3

� 1

⇒ More efficient transport of momentum than particles!
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Stationary magnetic fields Dtâ = 0

EXACT solutions for ξ = Dk2/Ω � 1:

νT ∼ −ξ
v2

Ω

[

I1(α) −

(

B0µ

ηk

)2

I2(α)

]

< 0

DT ∼ ξ
v2

Ω
I3(α)

〈n′2〉

(∂xn0)2
∼ ξ

v2

Ω2
I4(α)

〈u′
2
x〉 ∼ ξv2I5(α)

Here, v2 = τf〈F
2〉/νk4, α = B2

0µ
2/ηΩ, µ = kz/kH; Ii’s are

monotonically decreasing functions of α
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• Comparison between νT (I1, I2) and DT (I3)

⇒ More reduction in DT than νT

⇒ DT can still be reduced in spite of the reduction in νT
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• Effects of magnetic fields on cross-phase

⇒ Reduction in cross-phase due to magnetic fields

⇒ Possibility of significant reduction in transport without much
reduction in fluctuation levels
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IV Conclusions

• For strong shear Ωm � ωz, OZFS reduces transport as Ω−1
m the

effective decorrelation time τ∗ = τηωz
2/Ω2

m < τη

⇒ Turbulence regulation by OZFs less efficient than by RZFs?

• For ω � γ, ωz, τ∗ ∼ τη; OZFs reduces transport even for Ωm < ωz

• For strong shear, 〈n′2〉 ∝ τeff〈n
′vx〉 for τeff = τ∆, τD, τ∗

• Reduction in transport without much reduction in fluctuation levels
due to magnetic fields

• Magnetic fields can facilitate barrier formation

• Origin and properties of forcings and their effects on transport?

• Transport in more realistic RMHD models with toroidal effects?
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• Generation of zonal magnetic fields (dynamos)?

• Effects of magnetic fields (e.g. tearing modes) on particle/heat
pinch?
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