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Introduction

MHD model for ELMs:

• ELMs are MHD instabilities localized near the plasma edge

• low-n (toroidal mode number) peeling modes driven by edge current (bootstrap
current), highly localized

• high-n ballooning modes driven by edge pressure gradient, more extended

• intermediate-n coupled peeling-ballooning modes (e.g. Snyder et al., PPCF 46; 2004)

Effects of Sheared Toroidal Rotation:

• analytical theory (e.g. Connor et al., PPCF 46, 2004; Furukawa et al., PPCF 46,
2004) predicts stabilization of high-n ballooning modes in the s-α-model

• limitations: high n, large aspect ratio, no shaping

• ’Doppler shift’: linear growth rate γ → γ + inΩ(r) where Ω(r) is the rotation
frequency

• discontinuity in the linear growth rate γ(Ω) for n→∞
• linear stability limits, most unstable mode number, mode extend and mode phase



Linear MHD Stability Analysis

normalized MHD equations:

• continuity equation
∂ρ

∂t
= −∇ ·(ρv)

• momentum equation

ρ
dv
dt

= −∇p+(∇×B)×B

• divergence of B

∇ ·B = 0

• induction equation
∂B
∂t

= ∇×(v ×B)−∇×(η∇×B)

• energy equation
∂T

∂t
= −v · ∇T −(γ − 1)T∇ · v

linear MHD stability codes:

• CASTOR FLOW: compressible, resistive, toroidal rotation, full set of equations, normal mode analysis

(Huysmans 1991, Kerner el al. 1998, Strumberger 2005)
• MISHKA: incompressible, ideal, diamagnetic effects, reduced set of equations, normal mode analysis

(Huysmans et al., Phys. Plasmas 8; 2001)
• ELITE: compressible, ideal, toroidal rotation, solves Euler equations derived from perturbed energy

δW -ansatz (Wilson et al., Phys. Plasmas; 2002)



Toroidal Rotation

Aim: Study the influence of sheared toroidal rotation of the form

V0 = R2Ω0(s)∇φ , i.e. contravariant component V 3
0 = Ω0(s)

on the linear stability of the plasma edge for subsonic toroidal rotation
velocities.

available tools:

• CASTOR FLOW: toroidal and poloidal rotation; for low to intermediate toroidal mode
numbers (n ≤ 25) or simple equilibria (E. Strumberger)

• ELITE: toroidal rotation; for intermediate to high toroidal mode numbers (n ≥ 8)
(P.B. Snyder)

• MISHKA FLOW: toroidal rotation; for low to intermediate toroidal mode numbers
(I. Chapman,S. Saarelma)



Linear MHD Stability Codes

Linearization of MHD equations with perturbation ansatz

plasma variables F = F0 + F̃

equilibrium part F0

perturbed part F̃ =
∑

cn,m exp(imθ)× exp(inφ) exp(λt)

complex eigenvalue λ = γ + iω
with growth rate γ and mode frequency ω

no linear coupling of toroidal modes n because of axisymmetry



CASTOR FLOW

• normal mode analysis

• solves large matrix equation iteratively

• full MHD system with 8 plasma variables (ρ̃, T̃ , ṽ, B̃), or
reduced MHD system with 7 plasma variables (p̃, ṽ, B̃)

• toroidal mode numbers on 4GB machine:
n . 10 for experimental equilibria and high edge q,
n . 60 for moderate q analytical equilibria

full MHD system: (Strumberger et al. NF 45, 2005)

• continuity equation

λρ̃ = −ρ0∇ · ṽ − ṽ · ∇ρ0−v0 · ∇ρ̃

• temperature equation

λT̃ = −ṽ · ∇T0−v0 · ∇T̃ −(Γ− 1)T0∇ · ṽ



CASTOR FLOW (continued)

• momentum equation
λρ0ṽ = −ρ̃(v0 · ∇) v0 − ρ0(ṽ · ∇) v0 − ρ0(v0 · ∇) ṽ −∇

(
ρ0T̃

)
−∇(ρ̃T0)−∇ · Π̃ +(∇×B0)× B̃ +

(
∇× B̃

)
×B0

• Ohm’s law

λB̃ = ∇×
(
v0 × B̃ + ṽ ×B0 − η0∇× B̃

)
with perturbed viscous force for ion Landau damping

−
(
∇ · Π̃

)
m

= −κ‖|k‖vthi |ρ0

(
v‖
)
m

where k‖ =(n−m/q) /R is the wave vector and κ‖ ≈
√
π



CASTOR FLOW (continued)

reduced MHD system:

neglect perturbed centrifugal force −ρ̃(v0 · ∇) v0 in momentum equation
replace continuity and temperature equation by

• pressure equation

λp̃ = −ṽ · ∇p0−v0 · ∇p̃− Γp0∇ · ṽ

and

• reduced momentum equation

λρ0ṽ = −ρ0(ṽ · ∇) v0 − ρ0(v0 · ∇) ṽ −∇ · Π̃

+(∇×B0)× B̃ +
(
∇× B̃

)
×B0

memory requirements and CPU time scale with square of number of variables



ELITE

• normal mode analysis

• solves Euler equations derived from δW -ansatz by shooting method

• force balance equation for the plasma displacement ξ with expansion in 1/n,
keeping terms up to second order

• intermediate to high toroidal mode numbers n & 8
• uses poloidal harmonic localization for efficiency

MHD system in terms of ξ:

Γρ̃ = −γ [ (ξ · ∇) ρ0 + ρ0(∇ · ξ) ]

Γp̃ = −γ [ (ξ · ∇) p0 + gp0(∇ · ξ) ]

ΓB̃ = γ∇×(ξ ×B0) +
γR2Ω′

Γ
[[∇×(ξ ×B0)] · ∇ψ]∇φ

with Doppler shifted growth rate Γ = γ + inΩ, ratio of specific heats g
and Ω′ = dΩ/dψ



MISHKA FLOW

• normal mode analysis

• based on reduced linear MHD eigenmode code MISHKA D

• reduced MHD system with 7 plasma variables (p̃, ṽ, B̃)

• intermediate toroidal mode numbers n . 40 for moderate to high q values

• includes diamagnetic drift terms (Huysmans et al. PoP 8(10), 2001)

• code recently developed by Ian Chapman (UKAEA Culham)



Benchmarks

Aims:

• study influence of sheared toroidal rotation on stability limits

• use CASTOR FLOW for low to intermediate mode numbers and ELITE for high mode
numbers

• compare stabilization by sheared toroidal rotation to stabilization by diamagnetic
drifts (MISHKA D)

benchmark
CASTOR FLOW vs. ELITE
for an ideal plasma case
(no rotation)



Circular Equilibrium cbm1 hel

cbm1 hel:
• ballooning unstable circular equilibrium
• well resolved
• low edge-q ≈ 2
• no shaping
• => weak poloidal coupling
• benchmark possible up to high toroidal

mode numbers n ∼ 40



Shear Profiles

rotation profile Ω(s) = Ω0(1− sχ)
with s =

√
ψ/ψbd and χ = 2, 6, 10



Benchmark: cbm1 hel

• excellent agreement of CASTOR FLOW and ELITE for growth rates
• except for n = 50 (only 31 poloidal modes in CASTOR FLOW)
• mode frequencies agree very well for n = 8
• but constant factors for n = 20, 35, 50 (normalization issues?)



Benchmark: cbm1 hel (continued)



Benchmark cbm1 hel (continued)

MISHKA FLOW:
• excellent agreement for n = 8
• good agreement for n = 20 with
CASTOR FLOW mode frequencies
• good agreement for n = 35 with
ELITE mode frequencies
• possible problem with CASTOR FLOW

wave frequencies for high n but very
good agreement for growth rates



Circular Equilibrium ’internal kink’

internal n = 1 kink:
• circular Bussac equilibrium
• unstable to n = 1 internal kink
• fixed boundary (no vacuum)
• no shaping, low edge-q ≈ 2.5
• => weak poloidal coupling



Benchmark: ’internal kink’

• rigid rotation (no shear)
• excellent agreement in growth rates and mode frequencies between MISHKA FLOW and
CASTOR FLOW
• strong stabilization of the internal n = 1 kink
• completely stabilized in MISHKA FLOW, but finite growth rate in CASTOR FLOW
• possibly due to missing viscous damping (to be tested), sound waves?, or

destabilizing effect of centrifugal force



Toroidal Rotation: First Results

Results:
• stronger effects on high-n modes
• low shear generally destabilizing

(centrifugal force)
• intermediate shear generally

stabilizing
• high shear again destabilizing (Kelvin-

Helmholtz?)
• localization of shear and affected

mode region also matter



Mode Structures

Changes in Mode Structure:

• strongly destabilized mode n = 8 at very high shear and high rotation frequency
• no major change in mode structure
• internal modes slightly weakened
• entire mode shifted radially outward (centrifugal force)
• wide mode structure less affected by shear



Mode Structures (continued)

Changes in Mode Structure:

• weakly stabilized mode n = 35 at intermediate shear and high rotation frequency
• mode structure is smeared out and broadened
• internal modes strongly reduced
• mode center shifted radially inward (shear larger at edge)
• narrow edge mode strongly affected by shear



Mode Structures (continued)

Changes in Mode Structure:

• nearly unaffected mode n = 35 at very high shear and high rotation frequency
• mode structure broadened
• internal modes strongly reduced
• mode center shifted radially outward (centrifugal force reaches farther out)
• narrow edge mode strongly affected by shear
• compensation of destabilizing and stabilizing effects



Stabilization through Toroidal Rotation

stabilization of ballooning modes through rotational shear for a circular equilibrium (P.

Snyder, 2005)

Toroidal Rotation with ELITE (P. Snyder):

• circular equilibrium, ballooning unstable

• stabilization for high toroidal mode numbers or high rotational shear

• destabilizing for low toroidal mode numbers and low shear



High Rotational Mach Numbers

Strumberger et al. NF 45, 2005

from force balance equation follows:

pressure p(ψ, θ) = p̄(ψ) exp
(

Ω2R2

2c2s

)
with sound speed cs =

√
kBT/mi

=> for high Mach numbers M = ΩR/cs & 0.3:
pressure and density are not flux surface
quantities anymore!

equilibrium code DIVA allows to calculate
two-dimensional equilibria

CASTOR FLOW allows stability analysis for
equilibria with poloidally varying pressure and
density



Summary and Outlook

Results:

• centrifugal force can be destabilizing for high rotation frequencies

• intermediate shear acts stabilizing on narrow modes

• strong shear can act destabilizing (Kelvin-Helmholtz)

• mode localization with respect to shear layer and mode extent important

• more detailed studies necessary to investigate effects of toroidal rotation

Linear Edge Stability and Toroidal Rotation:

• successful benchmark of CASTOR FLOW, ELITE, and MISHKA FLOW for circular
equilibria with internal and edge localized modes

• next step: experimental equilibria (high-q, shaped)

• low-n mode studies with CASTOR FLOW plus high-n mode studies with ELITE

• comparison of diagmagnetic drifts to toroidal rotation

• access to second stability regime by rotation effects?


