Edge profiles during H-mode in TCV ...

 B. Behn, Ge Zhuang, A. Alfier², P. Nielsen², R. Pasqualotto², Y. Martin & TCV team Centre de Recherches en Physique des Plasmas, Assoc. EURATOM-Suisse Lausanne, Switzerland
² Consorzio RFX, Assoc. EURATOM-Italy Padova, Italy

Goal :

- measure spatial profiles of T_e and n_e near the plasma edge,
- · with spatial resolution adapted to the expected gradients
- · characterize profiles in terms of a set of parameters :
 - pedestal height
 - pedestal width
 - max. gradient
- · provide experimental data set as input for numerical modelling
- investigate profile changes during ELM cycle

Method :

- extension of standard Thomson scattering system on TCV
- · repetitive measurements during a quasi-stationary phase in ELMy H-mode
- processing of data using "coherent averaging"

Thomson scattering system on TCV

Basic features :

- 25 spatial channels along laser beam at R=0.9m, covering full vertical extent of plasmas in TCV
- spatial resolution : ΔZ =30mm
- filter polychromators with 4 spectral channels
- repetitively pulsed Nd:YAG lasers (3 units, 20Hz each)
- sampling intervals : 50ms (standard), >1ms (burst)

Extensison :

- 9 spatial channels
- spatial resolution : $\Delta Z=10$ mm
- filter polychromators optimized for parameter range :
 - T_e: 20eV to 1keV

• equipment on loan from Consorzio RFX, Padova

green : channels with improved spatial resolution (DZ \sim 10mm)

blue : channels of standard system ($\Delta Z \sim 30$ mm)

Pedestal Physics WS

Cadarache, April 2006 contribution by R. Behn

ohmic H-mode in TCV

Typical plasma parameters :

series of shots with ohmic he	ating only :	
constant power input :	P _{ohm}	500kW
current plateau :	۱ _p	400kA
good control of density :	n _{e-avg} 6	.4 10 ¹⁹ m ⁻³

toroidal field on axis :	Β _T	1.44T
major radius :	R ₀	0.9m
minor radius :	A _{min}	0.22m
majority ions :	D	

CRPP

quasi-stationary phase with ELMs

ELMy H-mode :

CRPP

Scenarios have been developed on TCV which permit to obtain extended phases in ELMy H-mode with small variations in **ELM** frequency and amplitude.

In addition, **magnetic perturbations** have been used to control and synchronize the ELMs (see intervals labeled "trig")

mapping of local TS measurements

Mapping onto equatorial plane :

- using flux surface geometry from equilibrium reconstruction ٠ based on magnetic measurements
- assuming ne and Te constant on flux surfaces ٠
- effective spatial resolution improved due to flux expansion ٠ in the area of the TS observation volumes
- spatial sweeps due to vertical motion of the plasma

effect of magnetic ELM triggering

CRPP

representation of edge profiles

the modified TANH function

$$F = a(5) - a(1) \cdot \tanh X - a(1) \cdot a(4) \cdot \frac{(X \cdot e^{-X})}{e^{X} + e^{-X}}$$

using normalized spatial coordinates :

R = radius on midplane

$$X = \frac{(R-a(2))}{a(3)}$$

function parameters :

- pedestal height : a(1) + a(5)
- pedestal width : 2 a(3)
- slope : a(1) / a(3)

see also refs. :

R.J. Groebner, T.H. Osborne PoP 5(5), 1800-1806, 1998 A. Kallenbach, R. Dux et al. Nucl. Fusion 43, 573-578, 2003

Pedestal Physics WS

Cadarache, April 2006 contribution by R. Behn

profiles during ELMy H-mode phase

Time-averaged profiles : during quasi-stationary phase

small vertical displacements of separatrix location

lead to improved spatial coverage after mapping of the data points onto the plasma midplane

electron temperature T_e TCV = # 26383 tw : E = trigfor the second sec

R-R_{LCFS}

pedestal height :

pedestal width :

max. grad. :

210 ev

1.1 cm

190 eV/cm

electron density n_e

complete profiles

Combining data from TS measurements in core & edge :

profiles and derivatives in normalized poloidal flux coordinates

temperature

density

pressure

evolution of profiles

Characteristic changes in edge profiles during a TCV shot : L-mode & H-mode

the same fit function (tanh) has been used in all cases

density :

temperature :

- smooth profiles during L-mode
- formation of large pedestal during ELM-free phase, large gradients near the edge
- decrease of n_e and rise of T_e in ELMy H-mode phase, strong gradients remain

profile changes due to ELM

Analysis of individual measurements :

Comparions of profiles measured immediately before (-0.5ms) and after (+0.2ms) an ELM :

Observation :

Occurance of an ELM affects profiles of density and temperature to a different degree :

density :

collapse of pedestal height

temperature : smaller effect

variation during ELM cycle (1)

Coherent averaging :

- · collection of data from quasi-stationary time intervals of several reproducible shots
- measurements at fixed repetition rate provide "random sampling" during the ELM cycle
- grouping of the data into "bins" according to their time delay with respect to the ELM spike

100 80 60 -2 +2 -4 -1 +1 40 +3 20 0 _4 -3 -2 -1 0 1 2 3 4 5 -5 delay [ms]

Criteria for the selection of the "bins"

- 1. time scale of expected profile changes
- 2. distribution of samples within time interval
- 3. statistics, number of samples per interval

Pedestal Physics WS Cadarache, April 2006 contribution by R. Behn

Distribution of "bins" with respect to "typical" ELM

variation during ELM cycle (2)

Change in profile parameters : pedestal height pedestal width max. gradient

using on profile fits by mod-tanh function and "coherent averaging" time window \pm 0.2ms around the ELM excluded, data in this interval not reproducible

summary

Instrumentation :

- Thomson scattering diagnostic on TCV upgraded by adding channels with higher spatial resolution in the edge region
- $\Delta Z = 10$ mm adequate to resolve gradient zone of temperature and density profiles, when advantage is taken of the local flux expansion
- system adapted for measurements at low temperatures (> 10 eV) and densities (> 5 10¹⁸ m⁻³).

Scenarios :

- fast sweeping of separatrix location helps to obtain better spatial sampling
- "coherent averaging" as a means to reconstruct time evolution during ELM cycle requires quasi-stationary ELMy H-mode phases with regular ELMs
- random sampling has permitted to follow time evolution during typical ELM cycle even with a diagnostic of inherently low sampling rate (20Hz Thomson scattering)

Analysis :

- mapping onto reference coordinates (mid-plane) relies on accuracy of the equilibrium reconstruction
- modified TANH function with 5 free parameters gives good description of edge profiles
- · characteristic change in parameters observed at L-H transition & before and after ELM
- · measured gradients represent a lower limit due to given spatial resolution of the instrument
- the same method (TS) can be used for measurements of core and edge profiles (consistency).
- results can be linked to measurements in the SOL obtained from other diagnostics (Langmuir probes).

Pedestal Physics WS

Cadarache, April 2006 contribution by R. Behn

