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Outlook

� Transport due to ergodic magnetic field- first principles;

� “Unusual” experimental results;

� Ergodic transport and ELM modelling in JETTO;

� What we can and what we can not explain in the modelling;

� Similarity between Resonance Magnetic Perturbation (RMP)

and ripple.
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Transport due to ergodic magnetic field- first principles      1/2

�In case of static magnetic perturbation stochastic diffusion results from the

overlap of magnetic islands (Rechester, Rosenbluth etc):

)(
16

,

~

', nm
r

nm r
B

B

mq

qr
W

θ

= - Island width;

� Onset of stochastisity corresponds to island overlap criterion:

Wm,n≥∆m, m+1≈ 1/kθs;

� In this case one can introduce diffusion of magnetic field line, DM:

DM=πqR(Br/B0)2, which can be related to stochastic diffusion of electrons
and ions:
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Transport due to ergodic magnetic field- first principles      2/2

� Therefore it is expected that stochastic magnetic field increases electron

transport in first place;

�It is also expected that stochastic transport strongly decreases with

collisionality (density);
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“Unusual” experimental results      1/4

� Application of RMP
results in density

drop rather than in

Te drop!

�Note that Ti

increases with RMP

so we can’t say that

electron thermal

conductivity is not

increased!
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“Unusual” experimental results      2/4

� The level of
calculated stochastic

electron transport,

induced by RMP,

exceeds

experimentally

observed transport

by 2 order of

magnitude.
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“Unusual” experimental results      3/4

� Transition from
ELMy to ELM-free H-

mode goes through

the stage with

significantly

increased ELM

frequency, which is

not expected from

transport modelling.
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“Unusual” experimental results      4/4

� Transition from
ELMy to ELM-free H-

mode goes through

the stage with

significantly

increased ELM

frequency, which is

not expected from

transport modelling;

�There is plenty of

other examples,

which show the

same trend (gas puff

scan, ripple

losses,...)
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ELM mitigation: prospective methods      1/2

�Since transport

within the ETB is

quite small,

plasma develops

strong pressure

gradient to

transmit heat flux

through the ETB:
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ELM mitigation: prospective methods                       2/2

�How can we mitigate ELMs or remove them entirely (without sacrificing

performance, which means keeping                                          )?

� Reduce the heat flux, which enters ETB (up to but not beyond the
limit, which triggers transition to type-III ELMs):

� Increase radiated power (extra impurities at the edge);

� Increase CX losses (gas puffing?);

� Increase the heat flux through the ETB between ELMs by increasing

thermal conductivity:

� Increase ion density (                                              );

� Increase transport by magnetic ripples or ergodic magnetic limiter;

� Induce quasi-continuous benign MHD (EDA, type-II ELMs, washboard

modes, pellets ???)
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Ripple
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Ergodic transport and ELM modelling in JETTO     1/7

� To simulate ETB JETTO assumes that all kind of anomalous transport is
eliminated within the specified region near the separatrix;

� The only remaining transport within the ETB is neo-classical plus additional
transport due to either stochastic magnetic field or ripple;

� Sometimes we assume that anomalous transport is not fully suppressed
within the ETB, we will indicate if this is the case;
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Ergodic transport and ELM modelling in JETTO     2/7

� Simple ad hoc model for ELM-induced transport is usually used in JETTO:

χi during ELM

χi before ELM
�ELM is triggered if ballooning or

peeling mode stability criterion is

violated;

�ELM amplitude, duration and

localisation are prescribed by user:
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Ergodic transport and ELM modelling in JETTO     3/7

�Using abovementioned

transport model, we manage

to reproduce experimentally

observed temporal evolution of

DIII-D plasma with RMP;

�To reproduce density drop we

should assume wall recycling

R=0.95;

�BUT, we should assume that

R=1 DURING ELMS!:
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Ergodic transport and ELM modelling in JETTO     4/7

�Generally, we also reproduce

profiles (apart from ITB);

�To reproduce correctly

density and temperature

profiles in RMP plasma we

should scale stochastic

transport down to

within the ETB;

�We can not reproduce an

increase in ELM frequency

before transition to ELM-free

H-mode;
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Ergodic transport and ELM modelling in JETTO     5/7

� Two questions remain unanswered:

� Why stochastic transport is much less than predicted by theory?

� How we can reproduce a non-monotonous behaviour of ELM frequency with

RMP amplitude?

� The answer on first question most probably lies in plasma rotation, which

can partially screen radial magnetic field;

� This  might lead to less overlapping islands (particularly inside ETB), which

should reduce the level of stochastic transport.

� To find if screening is important, we have done the following estimate (C.

Gimblett and J. Hastie):
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Ergodic transport and ELM modelling in JETTO     6/7

� Radial magnetic field screening by rotating plasma was considered in a

simple Visco-Resistive approximation in a cylindrical plasma (R.

Fitzpatrick, PoP 1998, 2006):
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Where Ω is local toroidal rotation frequency,

τL - visco-resistive layer time: τL=2(6 τA)2/3 τη2/3 τV-1/3;

τL=R/Vans - Alfven time; τη=µ0rs2/η - resistive time;

τV= ρrs2/µ - viscous time;

Please note that ΩτL/2m ≈0.15 at ρ=0.97 but it scales as:

ΩτL/2m~Ω/m×(ne/s2)1/3 ×Tµ1/3 and it increases 20 times when ρ decreases from
ρ=0.97 to ρ=0.9.

Therefore there is a room for magnetic field screening in real experiment!
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Ergodic transport and ELM modelling in JETTO     7/7

� Non-monotonic evolution of ELM frequency with RMP amplitude might be

explained by the non-uniformity of plasma parameters within the ETB;

� In first place this non-uniformity relates to a non-uniformity of residual

transport within the barrier:
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�Qualitatively developed model of stochastic transport reproduce the main

experimentally observed trends;

�More theoretical analysis should be done in order to clarify ergodic magnetic field

screening by plasma rotation;

�Transport properties within ETB can dramatically influence ELM behaviour;

� Non-linear ELM model is needed to validate the simplified ad hoc assumptions,

made in predictive modelling;

Summary
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 SPARE
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Predictive Transport Modelling 1/3

� If we would like to study how ELM frequency depends on plasma parameters,
we shorten the duration of ELM and/or reduce its amplitude;

� Two distinctly different situations have been identified depending on heat and
particle transport distribution within the ETB:

� ELM frequency remain relatively unchanged when ELM amplitude is reduced but
each ELM is getting composed of several short events;

	 ELM frequency increases inversely proportional to ELM amplitude/duration;
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Possible causes for ELM variability- transport within ETB      1/2

� Predictive transport modelling with JETTO and EDGE2D show that

external gas puffing changes collisionality within ETB;

� This changes bootstrap current, which directly influences position of the

operational point (J. Lonnroth et al., PPCF, 2004)

Low/no puffing Medium puffing Strong puffing
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Possible causes for ELM variability- transport within ETB       2/2

� This allowed us to explain the observed difference between ELMs

amplitude and frequency;
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� Experiment shows that when heating power exceeds L-H transition threshold,

plasma develops small, high frequency type-III ELMs (poor quality ETB?);

� Further increase in the heating power above the level PIII-I ≅ 2PL-H triggers
transition to high quality type-I ELMy H-mode (good quality ETB?)

Non-uniform transport within ETB: can it be part of the

explanation of a transition from type-I to type-III ELMs?
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�If transition to type-I ELMs corresponds to a condition that the shearing rate

ωExB, which is generated by the heat flux through the edge barrier Ploss  exceeds

the growth rate of a resistive interchange instability γRIM (O. Pogutse et al, EPS
1999), one can obtain:

�which leads to a dependence of the power threshold on the level of ripple losses

since χcoll= χneo+ χripple;

�Finally ripple losses generate radial current, which should induce

counter-B plasma rotation (observed in experiment);

Why ripple transport  might be important for H-mode 3/3
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Predictive modelling of JET plasma with ripple losses

� We assume that ripple

losses are diffusive with

wide ripple localisation;

� since transport is nearly

uniform within ETB, pressure

profile just before ELM is

practically the same for all

levels of ripple losses;

�  What is different however

it’s the ELM frequency,

which goes down when we

increase ripple transport;

Rho

Rho

P
re

s
s
u

re
 (

1
0

x
5

P
a
)

X
i 
(m

2
/s

)

Red lines - no ripple losses;

Blue lines - ∆χmax=1m2/s;
Green lines - ∆χmax=1.5m2/s



26Working

with Europe

 Pedestal Physics Working Session, Cadarache, 3-5 April 2006

Predictive modelling of JET plasma with ripple losses
� The ELM frequency decreases due

to larger edge losses between

ELMs with increased ripple

transport;

� The time-average pressure and

plasma energy content increase

with increased ripple losses (even

if max. pressure stays the same);

� A reduction in the ELM frequency and

rise in the energy content were seen in

JET ripple experiments in 1995;

� This result resembles the improved

performance obtained with a

stochastic magnetic boundary in DIII-D

(T. Evans et al., 2004 IAEA Fusion

Energy Conference).
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Predictive modelling of plasma

rotation
� Ripple losses of fast and thermal

ions generate toroidal torque, which

spins the plasma up in counter-B

direction;

� Anomalous viscosity (of the order of

ion thermal conductivity) has been

used in these simulations to

propagate negative plasma rotation

to the core;

� Toroidal velocity, calculated with the

maximum ripple and without NBI

torque reproduces qualitatively

velocity profile, observed in JT-60U

plasmas with PNB;
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Ripple transport versus stochastic magnetic field 2/3
� It is worth noting that the dependence of stochastic transport on plasma density
and temperature is exactly opposite to that of the neo-classical transport:
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� This means, for example, that

stochastic limiter can provide a

steady state ELM-free H-mode at

low density (which is not possible

with the neo-classical transport);
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1%

JET: JT60-U shape

and 0.3 δδδδ/δδδδ16

Note: for the same ripple, fast ion losses may be different (NB -

ICRF). In JT-60U losses are high also because NB are ⊥

0.1%

JET 32 coils: ripple is

~0.1%

~1%


