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Introduction

e The operational regime of future fusion

. . 150
reactors is characterized by
)
— an edge transport barrier, é 100
— relaxation oscillations of the barrier %
)
(Edge Localized Modes, ELMS). £ 50

— With barrier
= w/o barrier

e Explanations for relaxations are usually
based on MHD instability,

q=2 minor radiusd=2.2

— analysis of linear stability properties, no dynamics.

e Most existing dynamical models are phenomenological,

— not based on 1st principles, i.e. turbulence simulations.

e Frequency, crash time and energy release are central issues.
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Outline

e Overview of existing reduced dynamical models
for transport barrier relaxations.

e 3D fluid turbulence simulations.
e Subsequent reduced 1D model.

e Systematic reduction — 0D model.
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Reduced models for barrier dynamics: not straightforward

e simple model (1D):
transport egn. coupled to instability amplitude eqgn. at plasma edge

otp = —ax(Xoﬁ+X1!E\2ﬁ— I') p !
0 = Yo(Ti—ac)&+VoogE
p— — —>
= —0xp !
p: pressure profile, &: perturbation ampl., .
[: incoming energy flux, X: minor radius X

e Nno oscillations, stable fixed point, robust property
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Possible modifications to obtain oscillations or relaxatio ns

e Introduction of S—curve

— for dependency of flux vs gradient (due to ExB shear flow),
— In dynamical egn. for perturbation amplitude (explosive instability),

— In dynamical eqgn. for ExB shear flow (multiple states: L—H).

e Introduction of characteristics of ideal MHD eigenmodes

— vanishing growth rate below threshold,

— radial shape of global modes.
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S—curve for flux vs gradient produces relaxations

Introduce ambient turbulent flux [y

due to drift waves, etc.

P (T0) = My (T + XoTT: S-curve due
to turb. stabilization by ExB shear flow.

op = —ox | ®(M)+xale] T |
0 = Yo(TI—0c)&+VpogE

= —0xP|

i Py Db P

Relaxations, frequency  with power.

More sophisticated models available.

D=

Lebedev, Diamond, PoP 95
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Explosive instability

e Account for non-linear terms in amplitude equation:
first is destabilizing, second is stabilizing.

otp = —ax(Xoﬁ+X1\E!2ﬁ—r)
0 = Yo(Ti—ag)& + pE>—VvE3

= —0xp

e Dynamics close to Van der Pol oscillations. Cowley, Wilson, PPCF 03
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Multiple states for shear flow

L—H transition: multiple states for ExB shear flow u(T),

and:  effective flux Xef (U) TT depends on shear flow.

—0x [ Xeff (U) -]
— (71— 0l¢) — WU + Pl + vOZU

otp
otu

M= —0xp

Ginzburg—Landau type, limit cycle oscillations.

No perturbation amplitude, more appropriate for “dithering”.

Generalization to ELMs available.

Itoh, Itoh, PRL 91, PRL 95
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Linear ideal MHD instability model

e Linear ideal MHD eigenmodes: o0 f
— growth rate =~ 0 below threshold, ‘3;8] P=4MW
— global mode structure. 1332
* Modeled by o
— Heaviside funct. H on growth rate, fggo {P:ﬂi MW
- Gaussian shape G in eff. diffusivity x| 1\
0& = Yo (T1— 0ic) H (TT— dlc) & ® :
E-E) § 111
+ transp. code with Xes [ || G(X) 610 612 614 i B6 618 620
e Relaxations, frequency * with power. Lonnroth, Parail, PPCE 04

e More sophisticated models (peeling). Becoulet, Huysmans, EES 03
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State of the art

Most existing models are phenomenological.
Difficult to reproduce relaxations with frequency \, with power.

Turbulence simulations of relaxations exist,
based on turbulent ExB flow generation, no barrier.

Need for 1st principles based model, i.e. 3D turbulence simulations,
reproducing i) transport barrier i) complete relaxation cycle.
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3D edge turbulence simulations with transport barrier

e turbulence model: resistive ball. modes,
reduced MHD equations

S(r)

at DJZ_(p_I_ {(p7 DJZ_(p} — = |:|||2(p_ G p —I_ V|:|J4_(p Ormin rq=2 rq=2.5 rq=3 rmax
0P+ {0, p} = 3G+ DHZFH‘XLDEFHL g radial profile of source S

e 3D toroidal geometry at plasma edge

e driven by incoming flux My = f; _Sdr’, o

V.
rmin rq=2 rq=2.5 rq=3 rmax

press. profile evolves self-consistently

e barrier generated by imposed flow U,

radial profile of imposed flow U

locally sheared, Wg gy = (0rU )max

10
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Strong local ExB shear — formation of barrier
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Barrier relaxation oscillations appear

normalized pressure gradient

j 1. 10xPl/ (Fin/X 1)

‘normaliz‘ed turbulent flux

1 2 Tru/Ti
10 7 turb/ i
; | f

0

normalized velocity shear fluctuations 3. (WE — WEext) /WEext

O,
02 : [ fixed to O for t > 10% |
-0. | \ | | .
3 5 3 12 15 e all evaluated at barrier center
time / 16
e observed in a range of rin’ OE ext turb. state — relaxations — quiescent st.
— WE
e robust property scenario: |no barrier — barrier

12
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Fixed input power: frequency decreases with shear

normalized turbulent ﬂux
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Fixed power: freq. \, shear ; fixed shear : freq.

normalized turbulent flux w =14

20
10

O PP e s

wE = ‘12

20

T

T
T

(T

3 6 9 12 15 18

ﬂme/l@

input power: ['jp = 36

shear layer width: 0.12L

ASSOCIATION EURATOM - CEA |

/" power

normalized turbulent flux - 1

4 |

O \ ! !

4 | | | or=11

ZMMJ

O ! ! !

4 | | | _r=10

ZMMMMMU

O \ \

4 w w w — =9

ZjﬂtxlJw%mkimeJMWwakMklmwj

O \

3 6 9 12 15 18
ﬂme/l@

flow shear: W = 2
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Frequency dependence: two opposite trends

inverse averaged time lag between relaxations

L) tx10°
(@) = N w

A1) tx10°
(@) = N (O0)

9 10 11 12
fot

shear layer width: 0.12Lyx (-), 0.1Lx (- -)
15
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Frequency dependence: two opposite trends

iIf WE increases fast enough with [';, — frequency decreases with [j,.

1 normalized pressure gradient normalized pressure gradient
x : x 10 ! x
| 0.8
0.5 1 04
O,
0
4 normalized turbuxlent flux 20 normalized turbuwlent flux
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OM ) ¥ ] o D W S W I Y
3 8 time/lO313 18 3 8 time / 107(13 18
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Relative drop of confinement time:
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Possible relaxation mechanisms excluded

e Relaxations persist even if ExB f[n=36, wg=28

shear flow is frozen

| normalized pressure gradient
— mechanism # turbulent shear 1t

flow generation. 0.5

e No significant variation of modes normalized turbulent flux

localized outside barrier 104 1
5
— mechanism # toroidal mode J

normalized velocity shear fluctuations

coupling. o
-0.2-
e All fluctuations die out when sup- -8-
pressing curvature ' ‘ ‘ ‘ ‘
] ° tite / 16 12 15

— Kelvin—Helmholtz stable. 6
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Relaxation event propagates radially away from barrier cen ter

mean pressure gradient

11.9

11.8

time / 10

11.6

q=2 q=2.5 q=3
radius

mean pressure gradient versus radius and time
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Relaxation governed by mode at barrier center
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Relaxation governed by mode at barrier center

rms pressure fluctuations

rms pressure fluctuations

m,n=

14.36 14.38 14.4 1442 14.44 barrier at 13.64 13.66 13.68 13.7 13.72
time / 13 arrier a time / 16

Ngq=25 =277
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Less regular relaxation for barrierat q=2.7

normalized turbulent flux
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1D model for central mode amplitude  P(X,t) & profile p(X,t)

0P = —2yodx| Bl* +X L OxP+S
0t P = Yo (—0xP — ) P—ioEXP — X[ X*P+X L OxP

normalized pressure gradient

X =T —Trq: radial dist. from barrier center
m: poloidal wavenumber of central mode

e reproduces relaxation oscillations

e ExB shear w/E: OOEm/fo 20 normalized turbulent‘flux
— nonlinear short-term dynamics.
10
e Not described by linear modes ‘
g . D B

(long-term dynamics). 3 12 15

ﬂmg/1§

23
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Description by linear modes is not appropriate

For Oxp = —a, evolution equation for P is linear:

0tP = Yo (o — 0g) P—iwEXP— XﬁxzﬁJrXLa)%ﬁ

e most unstable eigenmode: 200 M
pe'™ ~ exp —5o2 Hime— —E A
o 2 X XL
with o? = /x. /X § . @
e growth rate: i
V=vo(a—ag) & — XX '
— YO\M —X0) 747 — 1
X H ﬂ
H 200 ﬂ |
e when iwEx term replaced by shift of 20 O(r-rpre 20

Instability threshold — no oscillations
24




— | CNRS - UNIVERSITE DE PROVENCE

ASSOCIATION EURATOM - CEA |

Time delay in stabilization by ExB shear flow

Short term dynamics of initial pulse

P(x,t=0) 0 d(X)

with —dxp = o and xﬁ term neglected.

Solution: | pLexp [\/Ot —tg/(?’r%)}

\/o =Yo (0 —0p), Tp = (%XL

We

/2) -1/3 |

Transient growth before stabilization.

Tp large for small X | (barrier) and low m.

Clearly observed in simulations (— curve).

O f L L L L
14.36 14.38 tim1e4lﬁ(§ 14.42 14.44

25
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OD model reproduces oscillations

Radial mode structure

# linear mode

e From 1D model — relevant radial structures: f)R(X), Ol (X) 50(X)

[ linear mode in case 0xp = const: Pin = Pr+iP) ]

e Projection: P(X,t) =arpr+iqp ,

e Amplitude equations:

5(X7t) = —OX~+ aOﬁO

T
! yE/yS =1.24

yE/yS =0.70

Y/Y, = 0.20 E

aR
ay
ag

(' —dpag)a — Qo (ay —aR)
—Yo3g + 28185 + 25,87

(T —&1a9) ar+ Q1 (ar—ay)

(i

[ =vyo(a—ag)—Ys—VYE
Qq ~ Q, = 2yee YE/Vs

Vs = X1
2/ (

YE = W

/

)

400 . 800 1200
Time

e same frequency dependence on ExB shear as in 3D simulations
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Conclusions

e 3D nonlinear turbulence simulations based on 1st principles show

— onset of transport batrrier,

— barrier relaxation oscillations.

e Mechanism based on effective time delay for stabilization by ExB sheatr,

no obvious S—curve, no global mode.

e Mean features are reminiscent of type Ill ELMSs:

— frequency dependence,

— resistive ballooning mode model
(low temperature plasma),

— sensitivity to shear flow.

turb. state — relaxations — quiescent st.

—> WE

no barrier — barrier
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