

Integrated modelling of L-H transition and ELMy H-mode: what do we have and what do we need?

David Coster

Max Planck Institute for Plasma Physics, EURATOM Association, Garching, Germany

What do we have? What do we need?

- 1. 1st principles based theory
- 2. Experiment
- 3. Modelling

- What is the pedestal? What stabilizes it?
 - Responsibility of IMP4
 - Personally think it will be a while before we get answers that everybody agrees on
 - Still some dispute whether anybody has achieved a true H-mode pedestal
 - Let alone ELMs on top of that
- What are ELMs?
 - Partly IMP4, partly IMP2
 - Definitive answers lie in the future
 - And will need to be tested

- Large amount of data out there
 - Perhaps need to pre-digest/select for the modellers
- Key data
 - On the L-H transition
 - On the pedestal
 - On ELMs
- Also want the "strange" results!

- Dependence on
 - B_t
 - n_e
 - H, D, T, He
 - Ion grad-B direction
 - Geometry

. . . .

- For each of
 - Te, ne, Ti
- Need
 - Pedestal width
 - Pedestal height
- And dependencies on
 - Geometry
 - $n_e, T_e, T_i \text{ or } P_{sol}, \text{ or } \rho^*, \nu^*, \beta$
 - Species

- When does an ELM occur?
- What is the effect of the ELM on
 - Particles
 - Main
 - Impurities
 - Energy
 - Electron
 - Ion
 - Momentum?
 - What are the scalings of frequency, size etc?

- Can we identify somebody who can act as a point person on the experimental data?
 - Preferably in liaison with ITPA and other similar activities
- Could also be two people
 - Pedestal data
 - ELM data

- Models for the pedestal
 - When does it get established?
 - What are its characteristics (size, transport levels)
 - How does it breakdown (ELMs, back transition)
- Needs to be confronted by experimental data

- Different approaches
 - Linear pedestal stability (IMP1)
 - Can help determine when it occurs
 - Might give an indication of size
 - Non-linear ELM models (IMP2)
 - Should (eventually) give complete answers
 - Semi-empirical
 - 1d
 - 2d
 - Need to be compared to the experimental data!

- Can we standardise the features of a pedestal model? [Kalupin?]
 - Inputs
 - Outputs
- Can we standardize on the features of an ELM model? [Parail?]
 - Inputs
 - Outputs

What tool development is necessary? (Within IMP3)

- To what extent are 1d codes satisfactory?
- To what extent are the 2d codes satisfactory?
- What features are we missing?
- What priority should be placed on further core-edge coupling?

- Ongoing effort underway
 - Agreement for simplest cases
 - More complicated cases still being actively pursued

- If I use the 1d codes in interpretive mode to analyse the same shot, will I get the same transport profiles?
- If I use the 1d codes in predictive mode, will I get the same result?
 - Including prediction of the density?
 - Including prediction of the pedestal?
 - Including prediction of L-H transition?
- Do we need to increase Benchmarking effort?

Are 1D/2D transport codes the right path?

- For analyzing some problems, the 1- or 2-D codes might not be the right approach
 - But will we really be able to afford the alternatives?
- Need more sophisticated approaches --- but will probably need to come back to the 1- or 2-D approaches because of speed.

IMP3: Transport code and discharge evolution

Topic 3A: MHD equilibrium and stability modules (**G. Perverzev**)

- Topic 3B: Non-linear modules (saw-teeth, ELMs, NTMs) (**V. Parail**)
- Topic 3C: Transport models (**D. Kalupin**)
- Topic 3D: Sources and sinks (V. Basiuk)
- Topic 3E: Interfaces to boundaries (**D. Coster**)

a long term scope: the fusion simulator

New Modular Structure of TASK

Integrated Tokamak Modelling, David Coster

Vision 3: Suttrop

Figure 3: Scicos model for L- and H-mode plasma density, stored energy and ohmic transformer flux consumtion.

W. Suttrop, L. Hoellt, and the ASDEX Upgrade Team: EPS 2005

2006-04-04 23:48:15

Integrated Tokamak Modelling, David Coster

Vision 3: Suttrop

Figure 4: Comparison of predicted and measured waveforms of ASDEX Upgrade shot 18079

2006-04-04 23:48:15

Integrated Tokamak Modelling, David Coster

Login:

A.Physicist

Password:

Define new project

Continue with existing project

2006-04-04 23:48:15

Project Type:

New project definition page

Initial Equilibrium:

Global Stability Home Page

	Run Log number					
From WDM Simulation			ITER003912			
From Exp. reconstruction	record	time	q(0)	Te(0)	IP	
	1	50.0	5.2	3.2	10.0	
Define-fixed boundary Define-free boundary	2	100.	1.01	3.5	20.0	
	3	101.	0.99	10.2	20.0	
	4	102.	0.98	12.1	20.0	
	5	103.	0.97	12.2	20.0	
	6	104.	0.96	12.3	20.0	
	7	200.	1.01	15.0	20.0	
	8	250.	1.01	5.0	18.0	
	9	300.	1.01	3.0	10.0	

Initial equilibrium from WDM simulation ITER003912 Record = 5, time=1.03, q(0) = 0.97, Te(0) = 12.2, $I_p = 20MA$

Choose Global Stability Simulation Package

NIMROD	info
M3D	info
M3D-C1	info
LBNL AMR Code	info

Initial equilibrium from WDM simulation ITER003912 M3D Initial Grid Record = 5, time=1.03, q(0) = 0.97, Te(0) = 12.2, $I_p = 20MA$ Definition: Graph1 -raph 2 Align with Geometric packing Graph 3 surfaces GraphA Triangular quad Radial points: Poloidal points: Number of q-values packing surfaces Manual Compute Save and and draw continue adjust

Initial equilibrium from WDM simulation ITER003912 Record = 5, time=1.03, q(0) = 0.97, Te(0) = 12.2, $I_p = 20MA$

M3D Extended MHD Model definition:

Initial equilibrium from WDM simulation ITER003912 Record = 5, time=1.03, q(0) = 0.97, Te(0) = 12.2, $I_p = 20MA$

M3D Additional Input Parameters:

quantity	default	input	
Problem run time			description
Output frequency			description
Timestep factor			description
Hyperviscosity coeffficient			description
Number of toroidal modes			description
			description

Initial equilibrium from WDM simulation ITER003912 Record = 5, time=1.03, q(0) = 0.97, Te(0) = 12.2, $I_p = 20MA$

Final Review of M3D Problem Setup:

Etc.....

Extended MHD Model:....

Problem time:.....

Output disposition:.....

