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Discussion: MHD stability of ETB. ELMs control.
1. ETB: turbulent transport is suppressed=>Transport through 

ETB=ELMs.=> Present theoretical understanding of ELMs:
-Status of ideal linear MHD.
-ELM size,convective and conductive losses. Explanation?
-Transport and non-linear MHD.

What can be used already and what should be done to 
progress both in understanding and “theory motivated”
Integrated Modelling of ELMs?

2. ELMs control:
-Stochastic boundaries.
-Ripple losses to control ELMs. 
-Pellet injection (AUG). 

Understanding? =>Integrated Modelling? Tests on JET? 
Implementation on ITER?
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Starting point: linear ideal MHD. (MISHKA, GATO, ELITE)

JET: G.Huysmans ‘01
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Max Pped increases with high triangularity
(δ) => increase of edge magnetic shear => 
higher confinement. 

Max pedestal 
pressure is limited  by 
ideal MHD.

current
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DIII-D(ELITE): Snyder ’02
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JET(MISHKA):Huysmans ‘01

Role of triangularity δ.
Predictive capability of linear ideal MHD.
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Can we predict pedestal parameters in ITER? 

Shaping,βp,density(=>bootstrap) are important for stability!

ELITE: Snyder NF ’04

Pedestal width Δ remains a key uncertainty => input : Δ and density profiles, 
Tped increases until stability boundaries for n=8-40 . High n modes limiting at 
narrow widths, go second stable at wider widths.
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MHD motivated model for Type I ELMs in JETTO.
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JET(JETTO): Lönnroth, Parail ’04

JETTO-1.5D transport code for Te,i, ne, j// (with bootstrap) diffusion. Transport 
coefficients in ELM area (~ETB) are proportional to the peeling and ballooning 
modes amplitudes, estimated from linear MHD theory. 
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Type I ELM size
Present theoretical models can’t predict self-consistently  losses in ELMs. 
Experimental scaling: ΔW/Wped decreases with (nped, ν*ped, τ//

ion,…?)
Underlying physics is not identified yet. Extrapolation for ITER is more or less 
pessimistic. JET,DIII-D,AUG,JT-60U: Loarte et al’02,’03
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ΔWELM~nΔTELM (conductive) + TΔnELM (convective). 
decreases when nped ~small change with nped, 

At high density (ν*?): only particle “minimum” Type I ELMs (DIII-D, JET, MAST, 
JT-60U). Not explained by theory.

DIIID: Leonard’01, similar JET Loarte’02

Conductive and convective losses.
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Minimum convective ELMs at high q95 or(and) high nped.
Conductive losses ΔTELM/T decreases: 

- with density (ν*?)

- at higher q95 (=4.5 ) + high δ~0.45 

even at low ν*~0.1!
JET: Loarte’04

Small convective ELMs:  
ΔW/Wped<5%. 

ITER limit
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Smaller affected area =>smaller ELMs?

grassy Type I

Ideal MHD stability codes+ experiments (JT-60U, AUG, JET, DIII-D)=> Factors 
decreasing ELM area: high triangularity δ, high q95, high edge magnetic shear, 
high density. Density effect: bootstrap current is lower, increased transport 
through ETB, pedestal widths?…

JT-60U(ELITE):Lao’00, Snyder,’02, Kamada’02, Oyama’04
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ELM affected area <==>energy and particle losses.

ELM energy loss is not connected with ELM area in a simple way. Mainly 
ΔTELM/T decreases for smaller ELMs. Challenge for theory.

JET: Loarte’03
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Non-linear MHD:
NIMROD (A. Pankin)

0<n<22=> many 
modes become 
unstable during an 
ELM

time

Te: conductive « blobs »

JOREK (G. Huysmans)

ne: convective (due to EXB) « blobs »
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TELM(Becoulet):MISHKA+non-linear heat transport
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time(s)

Conductive losses in ELM decreases with ν*
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External control of ELMs.

-Stochastic boundaries (DIII-D,pre-project for JET,ITER);
-Magnetic ripple (JT60-U,JET,ITER?);
-Pellet injection (AUG, project for JET,ITER?);

ELMs control: understanding=>integrated modelling?

Understanding? =>Integrated Modelling? =>Tests on JET before 
ITER?
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Understanding of DIII-D ELM suppression?
Why not heat                            ,but particle (EXB?) transport?

Poloidal flux n=3 : 3=n
polψ

Density n=3 : 3=n
en

E. Nardon, JOREK(G. Huysmans )

∑χχ
mn

2))1(
mnB(//~efferg

Role of rotation?
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High ν* Low ν*
Osborne EPS2005

Role of rotation and ν*? Comparison with TEXTOR?

Acceleration in the edge,braking in the corePlasma braking in the core Accelaration in the edge,braking in the core
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Design of ergodic coils for ITER: external or inner coils?

External coils: 400kA for H-mode,
Not adapted to hybrid and ITB.

wall

blanket module

Inner coils: 20kA « ++++ » 20kA« +--+ »
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Ergodisation Coils for JET – Pre-Engineering Phase 

P. Thomas,, G.Agarici A.Saille, J-M Verger
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Magnetic Ripples to control ELMs? Can it be used  in ITER?

JET experiment 1995,comparison JT60-U and JET (G. Saibene ,N. Oyama et al), 
JETTO,ASCOT modelling (V. Parail et al)
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Collisionality regimes:
High: (these particles oscillate between banana and ripple trapped state in a 

diffusive way) 
Low: non-diffusive losses . But what about fast particles losses (NBI,alphas?)

JET
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ELM triggering and control by small pellets (AUG).

Pellets trigger ELMs with frequency of 
f_ pellet injector > f _intrinsic ELM. 

~68Hz

AUG:Lang’03

Pellets: felm
-0.16

gas: felm
-0.6

Fuelling can be minimized with 
pellets as compared to gas 
leading to small ELMs with higher 
confinement.
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Pellet triggered and intrinsic ELMs are similar if fELM is the same.

gradP is lower with pellet=>Why pellet triggers an ELM? 
ELM is triggered after ~200μs  ~20% of pellet mass was ablated =>transient 
3D plasmoid=> Linear MHD is limited, but measured MHD activity is similar=>
the same peeling-ballooning mechanism?

intrinsic ELMpellet ELM

time

5 ms

intrinsic ELM
20Hz

pellet ELM 19Hz

ρ

Pellet ELM

Pellet ELM

AUG:Lang’03
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Screw driver

Helium flow regulator
LHe

D2

Screw

Heat exchange

Electromagnetic
driver

Fast valve

H2 or He

Pellet length
controler

Forevacuum pump

cutter

High Frequency Pellet Injector (HFPI) for JET

• Dec. 2004: Welcomed by STAC
• Jan. 2005: Officially accepted by EFDA SC as part of EP2
• Technical goal: ELM mitigation & deep fuelling
• Timeplan: commissioning after 2007 summer break
• Leadership: CEA
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END
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Early non-linear phase of ballooning instability.

Cowley '96, '03
q=4

q=2(stable phase)=>q=2(unstable)

...32)crit(t +νξ−μξ+ξα−αγ=ξ∂

If this term is 
destabilising=> 
explosive growth of 
the mode

Finger-like torolidaly localised 
structure. Explosive time scale:
(τE τA

2)1/3~50μs(JET)

Linear term

BOUT -3D Braginskii equations 
code Xu’02, Snyder’04

Starting point-unstable P profile. 
Linear growth followed by a fast 
burst to SOL.
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-high triangularity: δ~>0.55; 
-high q95=6.4 (ITER: q95~3);
-if high bp~1.64 (ITER: βp =0.8)+ high δ~0.6 
=> lower q95=3.8; 
-νped*~0.07-0.16 (ITER: ν* ~ 0.05)
-high pedestal pressure (like Type I) HHy2~1. 
-heat load to divertor decreases by /4-/5.

High confinement +small ELMs:Grassy ELMs (JT-60U).

JT-60U: Y. Kamada’00,’02, Oyama’04high βp(~1.64)



30thEPS, St. Petersburg, 7-11 July, 2003 M. BécouletPedestal Physics Meeting, 5/04/2006                             DISCUSSION: MHD stability, ELM mitigation

-high triangularity δ>0.4-0.5; Sensitive to shaping DN (AUG)! 
q95>4.2 (Type II, AUG) q95 ~3 (mixed Type I+II ,JET). 
-n/nGR~0.85-0.95 (medium ν*~0.6-0.8). 
-H 98y~1 

Type II ELMs =increased δB and δn => transport in ETB

AUG:Stober’01

JET: Perez’03
Increased δn (<30kHz, n=3-4)

δB(<40kHz, n=-8)

kH
z kH

z

Type II= Washboard resistive modes 
at high density? 
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High ν*(>1.5) regimes w/o ELM : EDA, HRS.

JFT-2M:Kamiya, Oyama’04

High ν*>1.5-2 (not achievable in all tokamaks!). EDA(Alcator C-Mod),High 
Recycling Steady (JFT-2M). Quasi-Coherent (QC) modes => Enhanced 
transport through ETB. Pedestal is peeling-ballooning stable ,QC correspond 
to resistive ballooning mode. But for ITER ν*~0.05!

Alcator-C-Mod:Mossessian, Hubbard ’01,’02
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Low ν*~0.05 QH-mode at counter NBI. (DIII-D,AUG,JT-60U,JET) 

-high upper clearance, conditioning;but not sensitive to shaping (δ); 
-counter neutral beam injection =opposite to Ip (not foreseen for ITER!); 
-larger Er shear at the edge as compared to ELMy H-mode; 
-low density: n/nGR~0.1 (DIII-D, strong pumping) -0.5(JT-60U w/o pumping); 
-higher Zeff=3.3-5, higher Prad; 
-edge MHD = Edge Harmonics Oscillations (EHO);

QH

AUG:Suttrop’03 Burrell’03

time
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3. Active control of ELMs.

JET:Huysmans’01
Type I ELMs =peeling-ballooning modes. 

How to control ELMs?

1)Maintain edge in stable region:
α~<αcrit providing transport mechanism 
through ETB (artificial Type II small 
benign ELMs?)=>external magnetic 
perturbation(COMPASS-D,DIII-D)

2) Triggering ELMs at given fELM to avoid 
large Type I , local change in pedestal ν*.
-small pellets(AUG);
- edge current (COMPASS-D,JET, TCV);
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ELMs triggering by external perturbation in COMPASS-D.

COMPASS-D:Fielding’01.

Coil current

Dα

δBr(n=1)

ne 
decreases

soft X-ray:
Te decreases

ELMs are triggered by magnetic 
perturbation. W/O δBr –ELM-free.

Resonant (q=m/n) at the edge 
radial magnetic perturbation n=1, 
m=4-5.

Radial perturbation δBr

Density decreases with δBr
.

Temperature decreases with δBr
.

Why ELMs are triggered ? 

New position in  (α-j ) MHD 
stability space, different modes 
can be unstable?
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55599

55601

Tped

nped(55601,55599)

dithering
Type I

Ip ramp-up

Ip ramp-down

Edge current can destabilise peeling 
modes: Type III ELMs (COMPASS-
D,JET) or dithering L-mode(JET).The 
result is very sensitive to edge Te, ne, 
dIp/dt…

Peeling mode destabilisation in Ip ramps experiments.
JET: Becoulet M.’03

COMPASS-D:Fielding’01

Ip(kA)

Dα

j//(MA/m2)



30thEPS, St. Petersburg, 7-11 July, 2003 M. BécouletPedestal Physics Meeting, 5/04/2006                             DISCUSSION: MHD stability, ELM mitigation

Edge current generation by vertical movements of plasma

fELM~fdriver

Vertical oscillations of plasma column (up-down              ) in inhomogeneous 
poloidal magnetic flux  =>Surface voltage=>Edge current=> Peeling ELMs with 
fELM~fdriver?

zezuu rr
=

coil current

coilext Ψδ+ΩΨ=Ψ>Ψ∇<−>Ψ<
∂
∂−>=Ψ<−= extuexttextdt

d
surfV r

TCV:Degeling’03
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Conclusions(1)

1.High confinement scenarios for ITER and Type I ELMs. 
-Unacceptable ELM losses predicted for ITER at low pedestal ν* ~0.05 : 
ΔWELM/Wped~20%, acceptable losses  ~5% -15%.
-Conductive losses decreases at high δ,high nped, high q95. Small 
(ΔWELM/Wped~5%) only convective Type I ELMs at high density n/nGR>0.8 or 
high q95>4.5.

2. Progress in ELM theory. 
-Ballooning-peeling linear MHD (MISHKA,ELITE,GATO,..) predicts LFS 
localisation, pedestal Pmax, effect of δ, ELM area => triggering mechanism of 
Type I ELMs is identified. Type I ELMs are predicted for ITER pedestal (ELITE, 
n=10-30).

-Transport codes model pedestal pressure profile relaxation due to the peeling-
ballooning modes destabilisation, ELM cycle, ELM-time. Present models cannot 
predict ELM loss self-consistently.

-Early non-linear stage of ELM: explosive evolution of ballooning mode=>finger-
like structures; particles and energy bursts into the SOL (BOUT-3D).
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3. High confinement (H97~1) benign ELMs (continuous edge MHD 
instead of burst transport in ETB ) were demonstrated in present 
machines, but their relevance for ITER parameters (H-mode: 
ν*~0.06, βp~0.8, q95~3) is still questionable.
-Grassy ELMs (JT-60U):low ν*=0.07-0.16, but high q95~6, q95~3.8 at high βp~1.6; 

-Type II and  mixed: too high  ν*>0.6; sensitive to shaping DN(AUG), high q95;

-EDA(Alcator-C-Mod) , HRS(JFT-2M): too high ν* ~1-10 regimes;

-QH and QDB(D-IIID, AUG,JT-60U): low ν* ~0.05 regimes; but high upper 
clearance, counter NB injection, low density, high Zeff;

-Type III in impurity seeded discharges. ITER at 17MA?
4. Active control of ELMs is in progress.

-Stochastic boundaries: ELMs can be suppressed at const confinement (DIII-D).
-Small pellets can trigger ELMs with given frequency and size (AUG).
-Edge current density can be controlled and trigger “peeling” ELMs.
(current ramps (JET, COMPASS-D) ,vertical oscillations of plasma(TCV))

Conclusions(2)


	Early non-linear phase of ballooning instability.

