Core-Edge Transport Coupling Via Manual Intervention

D. Coster, H.-J. Klingshirn

2011-12-31

Contents

1	Intr	oduction	5
2	Cre	ating the grid	5
	2.1	SOLPS5-B2 Grid	6
	2.2	ETS Grid	7
	2.3	Combined Grid	7
3	Cor	e-Edge Coupling	9
	3.1	Coupling methodology	9
	3.2	D case	12
	3.3	D+He + C case	18
		3.3.1 Discussion of interface boundary conditions for C	19
	3.4	D+He + C+Ar+Ne case	29
	3.5	D+He + C+Ar+Ne case, higher density	31
4	Con	nbined core-edge plots in VisIt	33
	4.1	Preparing CPOs with core data	33
	4.2	Using VisIt to access the UAL	33
	4.3	Creating 2d plots	33
	4.4	Creating 3d plots	35
	-/-	4.4.1 3d plots with transparency	38
		4.4.1 3d plots with transparency	3

List of Figures

1	AUG shot 17151 at 2.5s showing the 95% flux surface.	5
2	Combined core and grids for AUG shot 17151.	8
3	Combined core and grids for AUG shot 17151 as actually used in the core-edge coupling.	10
4	Interface quantities passed to B2 and the ETS, D case.	14
5	Plots of densities and temperatures in the core at the end of each ETS run for the D case.	15
6	Combined profiles, D case.	16
7	Plots of Te and ne for the final state of the D case.	17
8	Interface quantities passed to B2 and the ETS, D+He + C case	20
9	Plots of densities and temperatures in the core at the end of each ETS run for the D+C+He case.	20
10	Combined profiles, $D+He + C$ case.	21
11	Plots of Te and ne for the final state of the $D+He + C$ case. 9 poloidal points were used in Helena	 22
12	Plots of ion densities for the final state of the $D+He + C$ case. 9 poloidal points were	- <u>-</u>
13	The density of C^{6+} calculated in SOLPS5-B2 plotted on the flux surfaces close to the	23
	interface boundary for the case where boundary fluxes were specified using option $8. \ldots$	24
14	The density of C^{0+} calculated in SOLPS5-B2 plotted on the flux surfaces close to the	
	interface boundary for the case where boundary fluxes were specified using option 13	24
15	Plots of Te and ne for the final state of the D+He + C case, using SOLPS5-B2 option 13	
	for the flux boundary consistions. 17 poloidal points were used in Helena	25
16	Plots of ion densities for the final state of the D+He + C case, using SOLPS5-B2 option	
	13 for the flux boundary consistions. 17 poloidal points were used in Helena	26
17	Plots of Te and ne for the final state of the D+He + C case, using SOLPS5-B2 option 13	~-
10	for the flux boundary consistions. 33 poloidal points were used in Helena.	27
18	Plots of ion densities for the final state of the D+He + C case, using SOLPS5-B2 option	00
10	13 for the flux boundary consistions. 33 poloidal points were used in Helena	28
19	Plots of 1e and ne for the final state of the D +He + C+Ar+Ne case, using SOLPS5-B2	00
20	option 13 for the flux boundary consistions. 33 poloidal points were used in Helena	29
20	Plots of ion densities for the final state of the D +He + C +Ar+Ne case, using SOLPS5-B2	90
01	option 13 for the flux boundary consistions. 35 pointal points were used in Helena	30
21	Plots of 1e and ne for the final state of the D+He + $C+Ar+Ne$ case, using SOLP50-B2	91
22	Deten of the first boundary constitions. 55 pointar points were used in filefina Plots of ion densities for the final state of the $D + H_0 + C + A_0 + N_0$ as a using SQLPS5 P2	51
22	Plots of foll defisities for the line state of the $D+He + C+Ar+Ne$ case, using SOLP 50-D2	วา
99	CDO folds as presented by the Visit "Add." many. The numbers in the bioreachy below	32
23	pi are the ion species indices. The last bismaphy level indicates that the Taurhuss are	
	in are the foll species indices. The last meraticity level indicates that the revalues are	94
94	Combined 2d electron temperature produced with Vielt	04 94
24	Floatnen temperature plot extended to 2d and combined with ACDEX Upgrade well go	34
20	Electron temperature plot extended to 5d and combined with ASDEA Upgrade wan ge-	25
26	"Detate" encreten acting to entend 2d plata to 2d in tensidal direction	- 30 - 26
$\frac{20}{27}$	View settings for the 2D view in figure 25	30 96
21 29	View Settings for Coomstru/CoordSwap operator to fix vessal geometry	30 97
20 20	Light source settings as used in figure 25	31 97
29 20	2d rendering showing the AUC regal (2d) COLDS (2d) and ETS (1d) counted singulations	ა(ეი
J U	ou rendering showing the AOG vesser (50), SOLES (20) and ETS (10) coupled simulations.	90

List of Tables

1	Interface quantities passed between the codes. D only case, 9 poloidal points in Helena.	14
2	Timings for ETS and SOLPS: cpu used (and physics time), 9 poloidal points in Helena.	14
3	Timings for ETS and SOLPS: cpu used (and physics time). D+He + C case, 9 poloidal	
	points in Helena.	19
4	Timings for ETS and SOLPS: cpu used (and physics time). D+He + C case, 17 poloidal	
	points in Helena.	25
5	Timings for ETS and SOLPS: cpu used (and physics time). D+He + C case, 33 poloidal	
	points in Helena.	25
6	Timings for ETS and SOLPS: cpu used (and physics time). D+He + C+Ar+Ne case, 33	
	poloidal points in Helena.	29
7	Timings for ETS and SOLPS: cpu used (and physics time). D+He + C+Ar+Ne case, 33	
	poloidal points in Helena.	31

Listings

1	Sample carre.dat	input file for	creating a 96x36	3 grid								6
---	------------------	----------------	------------------	--------	--	--	--	--	--	--	--	---

1 Introduction

The core is usually simulated with 1D transport codes, and the edge with 2d transport codes. In this work, we explore coupling the core, simulated with the ETS, and the edge, simulated with SOLPS5-B2, for the steady state problem — *i.e.* to ensure self-consistency between the 2 simulated domains.

The basic procedure involves:

- 1. create a consistent grid for the ETS and SOLPS
- 2. alternate running the 2 codes, using the output from the one code as the input to the other, until converged

2 Creating the grid

We choose the matching surface between the two codes to be at 95% of the normalized polidal flux.

```
echo "import aug_eq; aug_eq.plot(shot=17151, time=2.5, file='17151_2500_psi_cut=0_95.png', cut=0.95)
Axis: [ 1.74423304 0.12186872] [ 1.05642062]
Xpt: [ 1.44091878 -0.94590132] [-0.10083864]
cut, psi_cut: 0.95 [-0.04297568]
Carre pntrat (0.95): 0.167573692185
```

This stored the data as run 17151, shot 0 (see Examples/case_17151_0/README).

Figure 1: AUG shot 17151 at 2.5s showing the 95% flux surface.

h					
<pre>\$paramete</pre>	ers	_			
repart	=	2			
nrelax	=	200			
relax	=	0.5			
pasmin	=	1.0E-03			
rlcept	=	1.0E-06			
pntrat	=	0.167573692185			
nptseg(1)	=	25			
deltp1(1)	=	2.0e-02			
deltpn(1)	=	5.0e-03			
nptseg(2)	=	25			
deltp1(2)	=	2.0e-02			
deltpn(2)	=	5.0e-03			
nptseg(3)	=	49			
deltp1(3)	=	5.0e-02			
deltpn(3)	=	5.0e-02			
npr(1) =		19			
deltr1(1)	=	-2.0E-03			
deltrn(1)	=	-2.0E-03			
npr(2) =		19			
deltr1(2)	=	1.0E-03			
deltrn(2)	=	1.0E-03			
npr(3) =		19			
deltr1(3)	=	1.5E-03			
deltrn(3)	=	3.0E-03			
tgarde(1)	=	1.000000E-01			
tgarde(2)	=	5.000000E-02			
\$end					

Listing 1: Sample carre.dat input file for creating a 96x36 grid

2.1 SOLPS5-B2 Grid

The B2 grid was created with the grid generator CARRE in the ITM-CARRE version: all input data is read from CPOs, but the code parameters are still read from a text file (carre.dat). ITM-CARRE is currently run using a Fortran wrapper routine that does UAL I/O. The CPO parameters (shot, run,...) are currently read from namelist files

Prerequisites for grid generation (information in brackets gives the CPOs that were used for this exercise):

- An equilibrium CPO (17151/0/2.5/equilibrium/coster/aug/4.09a):
 - holding Psi on a structured R,Z grid
 - with X- and O-Point information
 - Namelist file: ual.namelist.equilibrium
- A limiter CPO (17151/0/limiter/klingshi/aug/4.09a):
 - Target structures (i.e. intersected by the separatrix) must be closed polygons.
 - All other structures can be open.
 - Namelist file: ual.namelist.limiter
- A carre.dat inputfile holding the code parameters, c.f. listing 2.1.

ITM-Carre produces an edge CPO as output, with CPO parameters as specified in the namelist file

ual.namelist.edge (17151/3/2.5/edge/klingshi/aug/4.09a). The CPO contains only the grid, stored in edge%grid in the general grid description. It is a 2d quadrilateral grid, one unstructured space. ITM-Carre also creates normal output files as used in the SOLPS grid generation workflow. Currently these are used to pass the grid to B2.

2.2 ETS Grid

The ETS starting grid is based on running HELENA on the above equilibrium. This is done in Examples/case_17151_4/ with the command

make run_helena_cpo ARGS="17151 0 4 2.5"

and stored as shot 17151, run 4.

2.3 Combined Grid

The combined grid can be seen in figure 2.

Figure 2: Combined core and grids for AUG shot 17151.

3 Core-Edge Coupling

For the Core-Edge coupling exercise, two cases are consistered. A low power D only case, and then a higher power case with main ions D and He, together with C as an impurity.

The ETS starting points were based on PREPARE_INPUT_CPOS_XML/prepare_input_cpos_AUG_17151_6.xml and PREPARE_INPUT_CPOS_XML/prepare_input_cpos_AUG_17151_7.xml and produced with

make prepare_input_cpos ARGS=PREPARE_INPUT_CPOS_XML/prepare_input_cpos_AUG_17151_6.xml
make prepare_input_cpos ARGS=PREPARE_INPUT_CPOS_XML/prepare_input_cpos_AUG_17151_7.xml

in the ETS directory.

The relevant directories for the coupling are all under ETS/trunk/Core-Edge/:

PYTHON contains the python code for the coupling

 ${\bf ETS}\,$ contains the ETS runs

 ${\bf SOLPS}$ contains the SOLPS runs

A more detailed version of the procedure is as follows

- 1. set up an initial SOLPS case
- 2. in the ETS directory, set up an ETS case to run from the starting condition described previously in section 2, and run to stationarity
- 3. in the PYTHON directory, run the "coupling.core_2_edge" command
- 4. in the SOLPS directory, modify "b2.boundary.parameters" and "b2_ual_write.dat", and run "b2mn.exe", and then run "b2_ual_write.exe"
- 5. in the PYTHON directory, run the "coupling.edge_2_core" command
- 6. in the ETS directory, update "eq_ets.xml" and run the ETS again
- 7. repeat from 3 above until converged

To speed up the ETS cases, a lower poloidal resolution was used. The actual grids for the coupling cases are shown in figure 3.

3.1 Coupling methodology

The basic idea used in the coupling is that in one direction a value is passed, and then a flux is passed back.

To set this up, the python scripts use a number of arrays

SPECIES a list of length NS, the number of species considered in B2, containing 0, 1, ..., NS-1

dest_type a list of length NS containing a flag consisting of

- **0** there is no matching species on the core side
- 1 the species maps to a species in COREPROF, the index given by "dest_index" (see below)
- 2 the species maps to a species in COREIMPUR, the indices given by "dest_index" (see below)
- 3 the species maps to a species in CORENEUTRAL [not yet coded
- dest_index a 2D array of length NS by 2 giving the ion species number in coreprof ("dest_type" == 1), or the impurity species and charge state ("dest_type" == 2)

te_flag a flag that is either 0 or 1

Figure 3: Combined core and grids for AUG shot 17151 as actually used in the core-edge coupling.

- **0** the value of the electron temperature at the interface boundary is passed from SOLPS to the ETS, and the value of the electron energy flux at the interface boundary is passed back from the ETS to SOLPS
- 1 the value of the electron energy flux at the interface boundary is passed from SOLPS to the ETS, and the value of the electron temperature at the interface boundary is passed back from the ETS to SOLPS
- **ti_flag** a flag that is either 0 or 1
 - **0** the value of the ion temperature at the interface boundary is passed from SOLPS to the ETS, and the value of the ion energy flux at the interface boundary is passed back from the ETS to SOLPS
 - 1 the value of the ion energy flux at the interface boundary is passed from SOLPS to the ETS, and the value of the ion temperature at the interface boundary is passed back from the ETS to SOLPS
- na_flag an array of flags of length NS containing either a 0 or 1
 - **0** the value of the ion density at the interface boundary is passed from SOLPS to the ETS, and the value of the ion particle flux at the interface boundary is passed back from the ETS to SOLPS
 - 1 the value of the ion particle flux at the interface boundary is passed from SOLPS to the ETS, and the value of the ion density at the interface boundary is passed back from the ETS to SOLPS

The data-flow is shown for the case of 17151/403:

- 1. ETS starts from 17151/10402 and produces 17151/403
- 2. "coupling.core_2_edge" reads 17151/403 and writes to standard output the set of boundary conditions for SOLPS5-B2 that need to be added (by hand) to "b2.boundary.parameters"
- 3. 17151/20403 is written by "b2_ual_write.exe" based on the SOLPS run
- 4. "coupling.edge_2_core" reads 17151/403 and 17151/20403 and produces 17151/10403

3.2 D case

The physics case is a D only plasma, with SOLPS maintaining an upstream separatrix electron density of $3 \times 10^{19} m^{-3}$ through a D gas-puff from the "wall".

Densities/temperatures are passewd from SOLPS to the ETS, and the ETS returns particle and energy fluxes. Neutrals are ignored in the core, and SOLPS uses a zero-flux boundary condition for the neutrals at the core boundary.

The ETS cases form a progression in

ETS/case_17151_400 initial ETS run, started from 17151/6 and producing 17151/400

ETS/case_17151_401 continuation ETS run starting from 17151/10400 and producing 17151/401

ETS/case_17151_402 continuation ETS run starting from 17151/10401 and producing 17151/402

ETS/case_17151_403 continuation ETS run starting from 17151/10402 and producing 17151/403

ETS/case_17151_404 continuation ETS run starting from 17151/10403 and producing 17151/404

ETS/case_17151_405 continuation ETS run starting from 17151/10404 and producing 17151/405

ETS/case_17151_406 continuation ETS run starting from 17151/10405 and producing 17151/406

ETS/case_17151_407 continuation ETS run starting from 17151/10406 and producing 17151/407

The SOLPS cases form a progression in

- 17151_1.6MW_nesepm=3.0e19_D=0.4_chi=1.6_standalone.000 initial SOLPS run used to provide a starting condition for the 400 case below
- 17151_1.6MW_nesepm=3.0e19_D=0.4_chi=1.6_standalone.400 SOLPS5-B2 run with an initial plasma state from 000 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_400"; after completion "b2_ual_write.exe" produces 17151/20400
- 17151_1.6MW_nesepm=3.0e19_D=0.4_chi=1.6_standalone.401 SOLPS5-B2 run with an initial plasma state from 400 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_401"; after completion "b2_ual_write.exe" produces 17151/20401
- 17151_1.6MW_nesepm=3.0e19_D=0.4_chi=1.6_standalone.402 SOLPS5-B2 run with an initial plasma state from 401 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_402"; after completion "b2_ual_write.exe" produces 17151/20402
- 17151_1.6MW_nesepm=3.0e19_D=0.4_chi=1.6_standalone.403 SOLPS5-B2 run with an initial plasma state from 402 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_403"; after completion "b2_ual_write.exe" produces 17151/20403
- 17151_1.6MW_nesepm=3.0e19_D=0.4_chi=1.6_standalone.404 SOLPS5-B2 run with an initial plasma state from 403 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_404"; after completion "b2_ual_write.exe" produces 17151/20404
- 17151_1.6MW_nesepm=3.0e19_D=0.4_chi=1.6_standalone.405 SOLPS5-B2 run with an initial plasma state from 404 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_405"; after completion "b2_ual_write.exe" produces 17151/20405
- 17151_1.6MW_nesepm=3.0e19_D=0.4_chi=1.6_standalone.406 SOLPS5-B2 run with an initial plasma state from 405 above, with "b2.boundary.parameters" modified to contain the information

from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_406"; after completion "b2_ual_write.exe" produces 17151/20406

17151_1.6MW_nesepm=3.0e19_D=0.4_chi=1.6_standalone.407 SOLPS5-B2 run with an initial plasma state from 406 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_407"; after completion "b2_ual_write.exe" produces 17151/20407

The PYTHON cases were performed with

```
import coupling
import numpy
# Assume DO, D+
dest_type = numpy.array([0,1])
dest_index = numpy.array([[0, 0],[0, 0]]).transpose()
SPECIES = numpy.arange(2)
te_flag = 0; ti_flag = 0 ; na_flag = numpy.array([0,0])
and then a progression of
shot = 17151 ; run = 400 ; time=100
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151 ; run = 401 ; time=200
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151 ; run = 402 ; time=300
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151; run = 403; time=400
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151; run = 404; time=500
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151 ; run = 405 ; time=600
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151 ; run = 406 ; time=700
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151; run = 407; time=800
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
```

where the "core_2_edge" run followed the ETS run, and the "edge_2_core" followed the SOLPS run.

Figure 4: Interface quantities passed to B2 and the ETS, D case.

$\mathbf{B2}_{-}\mathbf{Qe}$	B2_Qi	B2_Gamma	ETS_Te	ETS_Ti	ETS_Ni
774534.944262	705999.944493	5.90317525081e+20	98.2324058893	99.98517951	3.34120635e+19
871330.391735	815549.777211	5.90629479835e+20	111.446502283	115.93981362	3.29450273e+19
870488.226183	788779.534689	5.90503377822e + 20	110.557492272	113.2012409	3.29063815e+19
860742.619169	798502.826479	5.90483381736e+20	109.771254433	113.50434584	3.30098752e+19
866667.358018	793566.593866	5.90477049406e+20	110.217911871	113.36355977	3.29783290e+19
863320.985334	796280.435897	5.90474751578e + 20	109.990928833	113.46510822	3.29841743e+19
865033.609351	794675.996054	5.90474623423e+20	110.095744098	113.38662477	3.29829469e+19
864076.587323	795588.29576	5.90474142013e+20	110.038343389	113.43349437	3.29837125e+19

Table 1: Interface quantities passed between the codes. D only case, 9 poloidal points in Helena.

Run	ETS	SOLPS
400	8440.92 (1s)	314.903 (1s)
401	12979.32 (1s)	305.405 (1s)
402	7801.67 (1s)	282.936 (1s)
403	7350.80 (1s)	278.004 (1s)
404	7065.27 (1s)	275.624 (1s)
405	7144.13 (1s)	257.578 (1s)
406	7119.18 (1s)	2783.33 (10s)
407	50236.63 (10s)	2705.32 (10s)

Table 2: Timings for ETS and SOLPS: cpu used (and physics time), 9 poloidal points in Helena.

Figure 5: Plots of densities and temperatures in the core at the end of each ETS run for the D case.

Figure 6: Combined profiles, D case.

Figure 7: Plots of Te and ne for the final state of the D case.

$3.3 \quad D+He + C case$

The physics case is a D+C+He plasma, with SOLPS maintaining an upstream separatrix electron density of $4 \times 10^{19} m^{-3}$ through a D gas-puff from the "wall".

Densities/temperatures are passed from SOLPS to the ETS, and the ETS returns particle and energy fluxes. Neutrals are ignored in the core, and SOLPS uses a zero-flux boundary condition for the neutrals at the interface boundary.

The ETS handles D^+ and He^{2+} , with zero flux boundary conditions for D^0 , He^0 and He^{1+} . The ETS impurity code is used to treat the carbon charged states, and a zero flux density boundary condition is used for neutral carbon.

For these simulations, the densities of the ionized C charge states were passed from SOLPS to the impurity code, but SOLPS used in the return direction zero flux boundary conditions for all of the C charge states, which summed to the same C flux as that from the ETS (zero).

The ETS cases form a progression in

ETS/case_17151_500 initial ETS run, started from 17151/7 and producing 17151/500

ETS/case_17151_501 continuation ETS run starting from 17151/10500 and producing 17151/501

ETS/case_17151_502 continuation ETS run starting from 17151/10501 and producing 17151/502

ETS/case_17151_503 continuation ETS run starting from 17151/10502 and producing 17151/503

ETS/case_17151_504 continuation ETS run starting from 17151/10503 and producing 17151/504

The SOLPS cases form a progression in

- 17151_5MW_nesepm=4.0e19_D=0.4_chi=1.6_standalone.000 initial SOLPS run used to provide a starting condition for the 500 case below
- 17151_5MW_nesepm=4.0e19_D=0.4_chi=1.6_standalone.500 SOLPS5-B2 run with an initial plasma state from 000 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_500"; after completion "b2_ual_write.exe" produces 17151/20500
- 17151_5MW_nesepm=4.0e19_D=0.4_chi=1.6_standalone.501 SOLPS5-B2 run with an initial plasma state from 500 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_501"; after completion "b2_ual_write.exe" produces 17151/20501
- 17151_5MW_nesepm=4.0e19_D=0.4_chi=1.6_standalone.502 SOLPS5-B2 run with an initial plasma state from 501 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_502"; after completion "b2_ual_write.exe" produces 17151/20502
- 17151_5MW_nesepm=4.0e19_D=0.4_chi=1.6_standalone.503 SOLPS5-B2 run with an initial plasma state from 502 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_503"; after completion "b2_ual_write.exe" produces 17151/20503
- 17151_5MW_nesepm=4.0e19_D=0.4_chi=1.6_standalone.504 SOLPS5-B2 run with an initial plasma state from 503 above, with "b2.boundary.parameters" modified to contain the information from "coupling.core_2_edge" based on the CPO output from "ETS/case_17151_504"; after completion "b2_ual_write.exe" produces 17151/20504

$17151_5MW_nesepm{=}4.0e19_D{=}0.4_chi{=}1.6_standalone.505$

The PYTHON cases were performed with

import coupling
import numpy

Run	ETS	SOLPS
500	12930.66 (1s)	9051.37 (1s)
501	$9025.31 \ (1s)$	8826.7 (1s)
502	7416.69 (1s)	8770.82 (1s)
503	7277.57 (1s)	8677.77 (1s)
504	7297.45 (1s)	9005.48 (1s)
505	7457.80 (1s)	8809.32 (1s)

Table 3: Timings for ETS and SOLPS: cpu used (and physics time). D+He + C case, 9 poloidal points in Helena.

```
# Assume DO, D+, CO .. C6+, HeO .. He2+
dest_type = [0, 1, 0, 2, 2, 2, 2, 2, 2, 0, 0, 1]
dest_index = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
                          [0, 0, 0, 0, 1, 2, 3, 4, 5, 0, 0, 0]]).transpose()
species = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
te_flag = 0; ti_flag = 0 ; na_flag = numpy.array([0,0,0,0,0,0,0,0,0,0,0])
dest_type, dest_index, SPECIES = coupling.get_coupling_destinations(17151,500,17151,20500)
and then a progression of
shot = 17151; run = 500; time=100
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151 ; run = 501 ; time=200
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151 ; run = 502 ; time=300
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151 ; run = 503 ; time=400
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
shot = 17151 ; run = 504 ; time=500
coupling.core_2_edge(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
coupling.edge_2_core(shot,run,time,te_flag,ti_flag,na_flag,dest_type,dest_index,SPECIES)
```

where the "core_2_edge" run followed the ETS run, and the "edge_2_core" followed the SOLPS run.

3.3.1 Discussion of interface boundary conditions for C

These simulations passed $C^{1+}...C^{6+}$ densities from SOLPS to the ETS, but passed the integrated flux over all charge states back to SOLPS (zero) which then used this as the boundary condition for all charge states.

If the individual charge states fluxes were used in SOLPS, then with boundary condition type 8, the net C flux across the boundary was 1.23172784978e+20 and with type 13, 1.2225042272e+20 (for the used approach, the net flux was -4.30361121895e+09). The main problem was for those charge states with fluxes out of the SOLPS domain into the core where the code was not able to draw enough flux. It might be possible to swap the coupling direction for the charge states with negative fluxes; some effort should be made to try to ensute the appropriate net flux across the charge states.

Figure 8: Interface quantities passed to B2 and the ETS, D+He + C case.

Figure 9: Plots of densities and temperatures in the core at the end of each ETS run for the D+C+He case.

Figure 10: Combined profiles, D+He + C case.

Figure 11: Plots of Te and ne for the final state of the D+He + C case. 9 poloidal points were used in Helena.

Figure 12: Plots of ion densities for the final state of the D+He + C case. 9 poloidal points were used in Helena.

The boundary condition used here in SOLPS to set the fluxes was option 8, which is used to set a local flux density on each boundary surface element. This does not mean, though, that the density of the ions (or neutrals) is a constant. For C^{6+} , this is not the case, as can be seen in figure 13.

Figure 13: The density of C^{6+} calculated in SOLPS5-B2 plotted on the flux surfaces close to the interface boundary for the case where boundary fluxes were specified using option 8.

An alternative formulation of the boundary consistions is possible in SOLPS5-B2 where an internal feedback loop is activated which varies the boundary density so that the integral flux across the boundary is the desired one (option 13). This was used and the resultant C^{6+} densities near the interface boundary are shown in figure 14.

Figure 14: The density of C^{6+} calculated in SOLPS5-B2 plotted on the flux surfaces close to the interface boundary for the case where boundary fluxes were specified using option **13**.

The resultant combined plots are shown in figures 15 and 16, where the number of polodal points in

Run	ETS	SOLPS
700	8705.62 (1s)	8637.08 (1s)
701	8532.55 (1s)	8675.53 (1s)
702	8503.54 (1s)	9263.45 (1s)

Table 4: Timings for ETS and SOLPS: cpu used (and physics time). D+He + C case, 17 poloidal points in Helena.

Run	ETS	SOLPS
800	11467.61 (1s)	8878.92 (1s)
801	10670.55 (1s)	9283.28 (1s)
802	5941.46 (1s)	8844.02 (1s)

Table 5: Timings for ETS and SOLPS: cpu used (and physics time). D+He + C case, 33 poloidal points in Helena.

Helena was also increased.

Figure 15: Plots of Te and ne for the final state of the D+He + C case, using SOLPS5-B2 option 13 for the flux boundary consistions. 17 poloidal points were used in Helena.

Figures 17 and 18 show the results with additional poloidal points in Helena.

Figure 16: Plots of ion densities for the final state of the D+He + C case, using SOLPS5-B2 option 13 for the flux boundary consistions. 17 poloidal points were used in Helena.

Figure 17: Plots of Te and ne for the final state of the D+He + C case, using SOLPS5-B2 option 13 for the flux boundary consistions. 33 poloidal points were used in Helena.

Figure 18: Plots of ion densities for the final state of the D+He + C case, using SOLPS5-B2 option 13 for the flux boundary consistions. 33 poloidal points were used in Helena.

3.4 D+He + C+Ar+Ne case

The physics case is a D+C+Ar+Ne+He plasma, with SOLPS maintaining an upstream separatrix electron density of $4 \times 10^{19} m^{-3}$ through a D gas-puff from the "wall". A fixed gas puff for both Ar and Ne were applied at the outer boundary in SOLPS-B2 (the "wall").

Figure 19: Plots of Te and ne for the final state of the D+He + C+Ar+Ne case, using SOLPS5-B2 option 13 for the flux boundary consistions. 33 poloidal points were used in Helena.

Run	ETS	SOLPS
900	18166.65 (1s)	41721 (1s)
901	13670.60 (1s)	43000.6 (1s)
902	10437.65 (1s)	38613.1 (1s)
903	10365.51 (1s)	37506.6 (1s)
904	10401.43 (1s)	37442.4 (1s)
905	10414.03 (1s)	33931.1 (1s)

Table 6: Timings for ETS and SOLPS: cpu used (and physics time). D+He + C+Ar+Ne case, 33 poloidal points in Helena.

Figure 20: Plots of ion densities for the final state of the D+He + C+Ar+Ne case, using SOLPS5-B2 option 13 for the flux boundary consistions. 33 poloidal points were used in Helena.

3.5 D+He + C+Ar+Ne case, higher density

The physics case is a D+C+Ar+Ne+He plasma, with SOLPS maintaining an upstream separatrix electron density of $5 \times 10^{19} m^{-3}$ through a D gas-puff from the "wall". A fixed gas puff for both Ar and Ne were applied at the outer boundary in SOLPS-B2 (the "wall").

Figure 21: Plots of Te and ne for the final state of the D+He + C+Ar+Ne case, using SOLPS5-B2 option 13 for the flux boundary consistions. 33 poloidal points were used in Helena.

Run	ETS	SOLPS
1000	18355.44 (1s)	46684.7 (1s)
1001	11948.39 (1s)	44238.4 (1s)
1002	10449.72 (1s)	41591.3~(1s)
1003	10569.40 (1s)	41858.9 (1s)
1004	10755.15 (1s)	40342.4 (1s)
1005	10584.50 (1s)	38641.7 (1s)

Table 7: Timings for ETS and SOLPS: cpu used (and physics time). D+He + C+Ar+Ne case, 33 poloidal points in Helena.

Figure 22: Plots of ion densities for the final state of the D+He + C+Ar+Ne case, using SOLPS5-B2 option 13 for the flux boundary consistions. 33 poloidal points were used in Helena.

4 Combined core-edge plots in VisIt

VisIt can be used for interactive analysis and plotting of data stored in the UAL. This section explains how.

4.1 Preparing CPOs with core data

Currently (August 2011), data on complex grids can only be accessed from VisIt when they are stored in CPOs using the general grid description. Data from any of the core CPOs therefore first has to be transferred into an edge CPO.

A program called convert_core_data_to_edge_cpo is provided in the Core-Edge/FORTRAN directory. It writes Te, Ti, ne, ni from the coreprof/coreimpur CPOs for a given run/shot to edge CPOs at equivalent time points. The 2d core grid used for this is derived from the equilibrium CPOs at same time points.

To run the tool, first check the input/output shot/run numbers in convert_core_data_to_edge_cpo.F90. Then compile and run in the same directory with

make
./convert_core_data_to_edge_cpo

4.2 Using VisIt to access the UAL

A tool called understand understand to launch VisIt and allow it to access given CPOs via the UAL. Assuming the CPOs of interest are stored in shot #17151, runs #598 and #598, time 2.5s, user coster, tokamak name aug, data version 4.09a, the understand understand used be

~klingshi/bin/itm-grid/ualconnector -s 17151,598,2.5 -c edge -s 17151,599,2.5 -c edge -u coster -t aug -v 4.09a

This launches unlconnector and a VisIt instance which is set up to access the CPOs specified on the command line.

Detailed documentation of ualconnector can be found at https://www.efda-itm.eu/ITM/doxygen/imp3/grid_service_library/python/.

4.3 Creating 2d plots

The CPOs written by SOLPS and convert_core_data_to_edge_cpo contain data on 2d grids. Use the Add/Mesh and Add/Pseudocolor menus to create 2d plots of grids and data. An example is shown in figure 24.

Some notes:

- CPOs are presented as hierarchical structures (see figure 23). Hierarchy levels that contain only numbers indicate indices for an array of structures. The names on the last hierarchy level contain the names of the subgrid the data is stored on.
- To get matching colors in different Pseudocolor plots you have to manually adjust the data ranges of the plots to match in the plot attributes.

Figure 23: CPO fields as presented by the VisIt "Add..." menu. The numbers in the hierarchy below ni are the ion species indices. The last hierarchy level indicates that the Te values are available both on the faces (2d cells) and the nodes of the core grid.

Figure 24: Combined 2d electron temperature produced with VisIt

Figure 25: Electron temperature plot extended to 3d and combined with ASDEX Upgrade wall geometry.

4.4 Creating 3d plots

The 2d data in the CPOs can be extended to 3d in order to combine it with other 3d data. This example combines edge and core data with the vessel wall geometry as shown in figure 25.

The basic steps to produce this plot are as follows:

- Launch ualconnector/VisIt as described in section 4.2.
- Data plots:
 - Create 2d data plots as described in section 4.3.
 - Apply the "Revolve" operator to the 2d plots (for settings see figure 26).
- Vessel plot:
 - Open the file /afs/efda-itm.eu/user/k/klingshi/public/wall/aug/wall.xmf in VisIt (this adds it as an additional data source).
 - Add a pseudocolor plot for variable "CellCenteredValues".
 - In case the vessel geometry has the wrong orientation, fix it by applying the Geometry/CoordSwap operator (settings show in figure 28).
 - Create a colormap that contains only one color and assign it to the previous plot.
- View:
 - Set the view properties in the Controls/View/3D view menu. Sample settings are shown in figure 27.
- Lights:

 X Revolve operator attributes 	 X Revolve operator attributes 	
Type of Mesh? O Auto O XY O RZ O ZR	Type of Mesh? O Auto O XY O RZ O ZR	
X Choose axis based on mesh type?	Choose axis based on mesh type?	
Axis of revolution 1 0 0	Axis of revolution 1 0 0	
Start angle -15	Start angle -25	
Stop angle 180	Stop angle 180	
Number of steps 100	Number of steps 100	
Make default Load Save Reset Apply Post Dismiss	Make default Load Save Reset Apply Post Dismiss	
(a) Core plot	(b) Edge plot	

Figure 26: "Rotate" operator settings to extend 2d plots to 3d in toroidal direction

€ X View	
Curve view 2D v	iew 3D view AxisArray view Advanced
View normal	1 -0.5 0
Focus	0 1.2 0
Up Vector	001
Angle of view	60
Parallel scale	1.2
Near clipping	-1.6
Far clipping	10.1997
lmage pan	-0.10311 -0.0449982
lmage zoom	0.7
Shear	0 0 1
Eye Angle (stereo)	2
	Perspective
Align to axis	
Scale 3D axes	
Commands	
Apply	Post Dismiss

Figure 27: View settings for the 3D view in figure 25.

 Add lights to the 3D scene in the Controls/Lighting menu. The sample plot uses three lights with properties as shown in figure 29.

Notes:

- When applying operators to individual plots, make sure you have deselected "Apply operators ... to all plots" in the VisIt main window to avoid confusion.
- It's currently not possible to retrieve the vessel geometry information via ualconnector in the form required for this plot, thus the approach with the xdmf file (which was actually created from data in a CPO). This will change in the future.

👻 🗙 CoordSwap opera	tor attribut	
New Coordinate 1 💿 Coord1	O Coord2	○ Coord3
New Coordinate 2 🔘 Coord1	○ Coord2	Coord3
New Coordinate 3 🔾 Coord1	Coord2	○ Coord3
Make default Load	Save	Reset
Apply	Post	Dismiss

Figure 28: Settings for Geometry/CoordSwap operator to fix vessel geometry.

• X Lighting		• X Lighting	
Mode Edit Preview	Active light 1 + Properties Light type Camera + Direction 0.093 0.418 -0.904 Color Brightness 100% 100% Enabled	Mode • Edit • Preview	Active light 2 Properties Light type Object Direction 0.402 0.438 0.804 Color Brightness 69% 69%
Make default Apply	Reset Post Dismiss	Make default Apply	Reset Post Dismiss

(c) Light 3

Figure 29: Light source settings as used in figure 25.

4.4.1 3d plots with transparency

Figure 30: 3d rendering showing the AUG vessel (3d), SOLPS (2d) and ETS (1d) coupled simulations.