
Accuracy tests

1. Cylindrical geometry

Transport equation for the temperature has been solved for constant source and diffusivity

distributions. All convective fluxes were neglected. At this first step, the cylindrical plasma

was considered and the equilibrium equation has been ignored. The central temperatureT0 was

selected as a characteristic of the numerical properties.

A series of runs varying number of the radial grid nodesNρ = 455, 201, 101, 51, 21, 11 and

time stepτ [s] = 10−5, 10−4, 10−3, 10−2, 10−1, 100 has been performed. The caseNρ = 455,

τ = 10−5 s was selected as a reference for assessment of the others. Deviations of all the runs
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Fig. 1. Deviation of different runs from the reference run isshown for different

values of the time stepτ andρ-grid sizeNρ = 455.

from the reference one are shown in Fig. 1. It is seen that the maximum errors are achieved at

t ≈ 1 s for all values ofτ and then decay to zero at steady state. Even the time step ofτ = 1
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s (shown in Fig. 1 with stars) converges to the steady state quite well although showing a huge

delay in the evolution. As one could expect the error behavesasO(τ) decaying by an order of

magnitude with each step inτ . This is illustrated by the next Fig. 2 where the same graphs are

shown in logarithmic scale. Figs. 1 and 2 show the absolute errors of different solutions. The

relative error is approximately by a factor of 2 smaller becauseT0(t) varies from 1.45 till 3.87.

Unevenness of the curves below10−5 is caused by a reduced accuracy of the data stored for

the plots (7 decimal digits). Having in mind that the characteristic time for these runs (energy

confinement timeτE) is approximately0.8 s we outline the properties ofτ -convergence:

1) At τ/τE ≤ 0.05 the time evolution is described within the accuracy of 1%.

2) The maximum deviation appears att ≈ τE independently of the time step.

3) Steady state (if achieved) can be reasonably described even atτ > τE.

0 2 4 6 8 10

1e-05

0.0001

0.001

0.01

τ = 10
-1

s

τ = 10
-2

s

τ = 10
-3

s

τ = 10
-4

s

Fig. 2. The same as in Fig. 1 in logarithmic scale.

As a general remark, we observe that the realistic transportmodelling imposes more severe

limitations than those derived from this simplified study. In particular, a non-linearity of the

problem results in instability of the numerical solution that appears in spite of fully implicit

(backward Euler) in the second order derivativeT ′′ numerical scheme. The requirement of the

numerical stability keeps the time step far below the valuesforced by the requirement of the

reasonable numerical accuracy.
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Fig. 3. Deviation of different runs from the reference run isshown for different size

of theρ-grid andτ = 10−5 s (solid lines) andτ = 10−3 s (dashed line).
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Fig. 4. The same as in Fig. 3 in logarithmic scale.
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The next series of curves in Figs. 3 and 4 shows a dependence ofthe numerical error on the

space grid size in linear and logarithmic scales, respectively. One sees that even at 11 grid

nodes the error does not exceed 0.5%. In practice it means that except for some specific cases

(ITB, sawteeth, tearings) a grid of 20 cells, i.e. 21 grid points, (the number has been fixed in

TRANSP for a decade) delivers an accuracy sufficient for mosttokamak applications. Further

examination shows that the error behaves asO(N−2) in accordance with the general theory.

Another observation is that, unlike theτ -dependence, the saturated value ofT0 is different for

each grid size. Nevertheless, this difference is small and cannot be considered as meaningful.

In order evaluate the relative influence of the grid-node number and of the time step we put on

the same plot also one curve with a larger time step. It is seenthat from the point of accuracy

duplication of a number of grid points is more efficient than decrease of the time step. The

time consumption increases approximately linearly with both, the number of time steps and the

number of grid points although the latter is valid for a simple transport problem only.

2. Toroidal geometry

All runs of the previous section have been repeated for the toroidal geometry where the plasma

equilibrium was calculated by a 3-moment equilibrium solver EMEQ. EMEQ has been used at

the radial grid ofNeq = min(101, Nρ) nodes. Fig. 4 shows the same dependences as Fig. 2 for

a tokamak with a circular cross-section (R0 = 6.2 m, a = 2 m, B0 = 5.3 T, Ipl = 6 MA).

Comparison shows that adding of the equilibrium constraints does not affect the accuracy of

the calculations noticeably. Qualitative behaviour also does not change with one exception: As

clearly seen from Fig. 5 a new slow time scale appears in the problem. This is the skin time that

comes into the problem because the equilibrium equation couples together the current diffusion

and the energy/particle balance equations. In this particular case, the skin time is about 10 s. It

exceeds the energy confinement time more than by a factor of 10so that one needs to wait for

about 30–40 s before a good steady state is achieved.

Nevertheless, we conclude that neither the influence of the tokamak geometry nor the slow

equilibrium drifting changes the main outcome of this exercise:

The choice ofNρ = 101 andτ = 0.001 s gives a reasonable time/space step combination that

allows to keep the relative error below the limit of 0.5h (5 × 10−4). This combination is

proposed for ETS V&V study.
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Fig. 4. The same as in Fig. 2 with the equilibrium switched on.
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Fig. 5. The same as in Fig. 3 with the equilibrium switched on.


