Accuracy tests

1. Cylindrical geometry

Transport equation for the temperature has been solveddizstant source and diffusivity
distributions. All convective fluxes were neglected. Atstfirst step, the cylindrical plasma
was considered and the equilibrium equation has been igndies central temperatuiig was
selected as a characteristic of the numerical properties.

A series of runs varying number of the radial grid nodés = 455,201, 101, 51,21, 11 and
time stepr[s| = 107°,107%,107%,1072,107%,10° has been performed. The ca¥g = 455,
7 = 107° s was selected as a reference for assessment of the otheratides of all the runs
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Fig. 1. Deviation of different runs from the reference rursiewn for different
values of the time step andp-grid sizeN, = 455.

from the reference one are shown in Fig. 1. It is seen that ge@mum errors are achieved at
t ~ 1 s for all values ofr and then decay to zero at steady state. Even the time step-of
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s (shown in Fig. 1 with stars) converges to the steady state eell although showing a huge
delay in the evolution. As one could expect the error behas€3(7) decaying by an order of
magnitude with each step in This is illustrated by the next Fig. 2 where the same graphis a
shown in logarithmic scale. Figs. 1 and 2 show the absolutesof different solutions. The
relative error is approximately by a factor of 2 smaller hese;,(¢) varies from 1.45 till 3.87.
Unevenness of the curves beld®w° is caused by a reduced accuracy of the data stored for
the plots (7 decimal digits). Having in mind that the chagastic time for these runs (energy
confinement timey) is approximately).8 s we outline the properties efconvergence:

1) At 7/7p < 0.05 the time evolution is described within the accuracy of 1%.

2) The maximum deviation appearstat 7z independently of the time step.

3) Steady state (if achieved) can be reasonably descrileadaty > 7.
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Fig. 2. The same as in Fig. 1 in logarithmic scale.

As a general remark, we observe that the realistic transpodelling imposes more severe
limitations than those derived from this simplified study. particular, a non-linearity of the
problem results in instability of the numerical solutiorattappears in spite of fully implicit
(backward Euler) in the second order derivativenumerical scheme. The requirement of the
numerical stability keeps the time step far below the valoesed by the requirement of the
reasonable numerical accuracy.
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Fig. 3. Deviation of different runs from the reference rushewn for different size
of the p-grid andr = 107° s (solid lines) and = 102 s (dashed line).
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Fig. 4. The same as in Fig. 3 in logarithmic scale.
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The next series of curves in Figs. 3 and 4 shows a dependeribe atimerical error on the
space grid size in linear and logarithmic scales, respagtivOne sees that even at 11 grid
nodes the error does not exceed 0.5%. In practice it meanhexbept for some specific cases
(ITB, sawteeth, tearings) a grid of 20 cells, i.e. 21 gridn®j (the number has been fixed in
TRANSP for a decade) delivers an accuracy sufficient for nmak&tmak applications. Further
examination shows that the error behave<)d8/—2) in accordance with the general theory.
Another observation is that, unlike thedependence, the saturated valud pfs different for
each grid size. Nevertheless, this difference is small antat be considered as meaningful.

In order evaluate the relative influence of the grid-node Ipeinand of the time step we put on
the same plot also one curve with a larger time step. It is Hesrfrom the point of accuracy
duplication of a number of grid points is more efficient thatitase of the time step. The
time consumption increases approximately linearly witthbthe number of time steps and the
number of grid points although the latter is valid for a siemphnsport problem only.

2. Toroidal geometry

All runs of the previous section have been repeated for ttoedal geometry where the plasma
equilibrium was calculated by a 3-moment equilibrium soEMEQ. EMEQ has been used at
the radial grid ofV,, = min(101, N,) nodes. Fig. 4 shows the same dependences as Fig. 2 for
a tokamak with a circular cross-sectioRy(= 6.2 m,a = 2m, By = 5.3 T, I, = 6 MA).
Comparison shows that adding of the equilibrium constsatittes not affect the accuracy of
the calculations noticeably. Qualitative behaviour alsesinot change with one exception: As
clearly seen from Fig. 5 a new slow time scale appears in thiglgm. This is the skin time that
comes into the problem because the equilibrium equatioplesdogether the current diffusion
and the energy/particle balance equations. In this pdaticase, the skin time is about 10 s. It
exceeds the energy confinement time more than by a factor s 1i@at one needs to wait for
about 30—40 s before a good steady state is achieved.

Nevertheless, we conclude that neither the influence ofdkanmak geometry nor the slow
equilibrium drifting changes the main outcome of this eissc

The choice ofN, = 101 and7 = 0.001 s gives a reasonable time/space step combination that
allows to keep the relative error below the limit of @5 (5 x 107%). This combination is
proposed for ETS V&V study.
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Fig. 4. The same as in Fig. 2 with the equilibrium switched on.
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Fig. 5. The same as in Fig. 3 with the equilibrium switched on.



