ETS benchmarking and verification
Intermediate report (ASTRA results)

On the basis of the previous study the time step- 10~2 s and the number of grid points
N, = 101 has been selected.

Part I. Cylindrical geometry. Consistency and conservatio check.
1. Non-coupled equations.

Test.1.1.

F value / flag| Bnd. type / value F(p,0) | F(p,t) | D |v | s
Wil - — N
T,12 1/1 P2,1)| - |o|o0]|o0
Ti112 1/1 P(2,1) - 0/0|0
Nel 2 1/1 P(2,1) - 0/0|0
niil2 1/1 P(2,1) - 0/0|0
n;2 /0 - - - - ==

OUtDUt: Ne,i (pv t) — Neyi (pv 0), Te,i(pv t) - Te,i(pv 0)

Result:

At grid points, all quantities start with being zero in algds. In course of time evolution they
randomly jump with an increment being a multiple of the rowiterror

€rs = 2.220446049250313 x 10~'° = EPSILON(REAL(KIND = 8).

There is no clear dependence of this behaviour on the tinpeasten the grid node number.
The overall error (for many time steps) sometimes is addddaoumulates, sometimes it does
not and stays limited. In this particular case, during th&t fi6° time steps the mismatch was
limited to 8eps.

In what follows, if the one-time-step error is commensueabith ez we shall say that the
result is correct to within the machine accuracy.

Test1.1.2. Heref(p,t) =1+ sin(t)

F value / flag| Bnd. type / value F(p,0) F(p,t) D|v]|s
Pll - - - - =1- Comment:
T.12 1/1 P(2,1) - 0|0]|O0 Pe; MUSt stay
T, 12 1/1 P(2,1) - 0/0]|0 unchanged.
nell - - P(f(p,t),1)| 0 |0]0
niall - - P(f(p,t),1)| 0| 0|0
n; 2/ 0 - - - - ==
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Output:  pc;i(p,t) = pei(p, 0).

Result:

The discrepancyp. ;(p,t) — pei(p, 0) behaves similar to that of the previous case adding at
random time steps multiple of+ egs. In this case, the error increment changes sign and the
overall error stays withi0 ¢ pgs.

Test [.1.3.

Fvalue/flag| Bnd. type / value F(p,0) | F'(p,t) | D | v | s Comment:
Pll - - - — =] = Particles and energy
T./2 470 P2, 1) ~ 110l0 mustbecorjieBrved.
Tiql2 410 P(2,1)| - [1]0]0 /P‘A’BW: 2
n. 12 410 P2,1)| - [1]o]o /PJABW_Az,?sz
niy /2 470 P2 1) — 11010)+ Exact solution fom
n;2 /0 — - - - =] is available

Value of the energy flux in the second column is related to émelactive heat fluy; (j = e, ).
Convective heat flux';7} is discarded, i.ec; ; = 0.

Result:
Because zero source and zero flux through the boundary aserjped the total number of
particles and the partial thermal energies should conséreeeans that the integrals

0 oW,
a/ne(pj,t)d‘/, 5 at/zn“’ pj> t)Te(pj, t)dV

and similar for ionsvshould vanish. Numerical |mplemem1m|)f these derivatives should not
exceedepg at each time step. In simulation, a quality of conservatgonharacterized by the
guantity

N

Z (pj; 1) HvV'( (pj /Zlne pj; 0 V/(PJ) (1)

Jj=1 J
and so on. The maximum growth rate should be limited\y:s that translates td\,,., <
ersIN ~ 10~ 13¢. In this particular case),,. initially grows at the maximum rat4,,,.... As long
as the run approaches steady state (in this ¢asej s) the rate drops to zero. In opposite,
Ay does not show the linear growth witki because an increment of;;,. at each time step
has a random sign. However, if the grid si¥g changes it can happen thay,. starts to grow
linearly while A,,. oscillates around zero.

Comment:
Although an analytic solutiom?"(p,t), is available for this case it would be not relevant to
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consider the quantity

S nels OV'(05) | om0 OV p,) 1 @)

in place of Eq. (1). The quantity (2) characterizes an aayupdnumeric scheme. It depends on
N, and, in this particular case, is of ordetl0~?, i.e. by 13 orders of magnitude larger than (1).
The value of Eq. (2) should monotonically depend on the tintegaid step. The value of Eq. (1)
should not. The quantity (1) characterizes the consemvatioperty of a numeric scheme that
is the main subject of this section.

Test I.1.4. Discontinuous diffusion coefficient (added in October 2009
D(p)=1+H(p—p1), pp=1m.

F value / flag| Bnd. type / value F(p,0) | F(p,t) | D |v|s
Pl1 - - - - | ==
T.12 4/0 P(2,1) - D(p)| 0|0
Ti112 4/0 P(2,1) - D(p)| 0|0
Nel 2 4/0 P(2,1) - D(p)| 0|0
niil2 4/0 P(2,1) - D(p)| 0|0
n;2 /0 - - - - | ==
Result:

The behaviour of quantitied,,., Aw. and similar is qualitatively the same as in 1.1.3. More-
over, the growth rate o, is by a factor of 2 smaller.

Test 1.1.5.

F value / flag| Bnd. type / valug F(p,0) | F(p,t) | D |v | s
Pl1 - - - - |—-|-
T.12 4/0 P(2,1) - 01|1|0
Ti112 4/0 P(2,1) - 01|1|0
Nel 2 4/0 P(2,1) - 01|/1|0
nial2 4/0 P(2,1) - 01|/1|0
n;2 /0 - - - - | ==

Comment: At D — 0 the equation degenerates so that only one the two boundadjticms
atp = 0 can be satisfied. Nevertheless, it makes sense tojpusiboth examples down to zero
in order to determine numeric limits and get an idea aboutlves numerical diffusion of the

.0 0 0
scheme. For constantand D the equatlonapn + 2,7 <vn — Da—n> = 0 has a steady state
p P
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(asymptotic at — oo) solution which for parabolic initial distribution(p, t)|,_, = P(no, n1)

reads N
e ().

with g(r) being o(r) = [1+ (r — 1)e”] /22 and (), o~ 5+ 2 (o),
It is seen that the only parameter that influences the analgsult isva,/D. Numerically,
essential parameterig./ D (so called grid Peclet number), whetras a size of the space grid
cell. It is clear that a reasonable result can be expectédhif D| < 1.

1r
—€ .

Result:

In this example,D has been fixed = 0.1 m?/s, v was varying. For all runs, the quantities
Ane, Awe and similar were conserved with the machine accuracy. Alaéqns show similar
behaviour therefore we discuss results for the density. oy accuracy of the numerical
scheme has been evaluatedsdg) = |n;(p,t — oo) — n>(p)| /ni(p, 00). This quantity shows
practically no dependence grand is given in the table below for different valuesvof

v S| -4 3| -2 -1 -3 -1 A 3 1 2
vh/D | -1 | -0.8|-0.6|-0.4| -0.2| -0.06| -0.02| 0.02| 0.06| 0.2| 0.4
% (4513221 ]13]083]064|021| 11| 29|95]185

Test 1.1.6a. Boundary condition — prescribed total current.

F'value / flag| Bnd. type / valug  F(p,0) F(p,t) | D |v| s
W2 1/10MA | P(0,27Ry) | - |of*|0| O
T.12 1/1keV P(2,1) — 1 |0|Qon
T,.10 - - - [ - 1-] -
nell - - P2,1)| - |—-| -
niall - - P2,1)| - |—-| -

Output: Current density, loop voltage, poloidal field energy, Paygtector, Joule heating.

Result:

In steady state, the central electron temperature sasuatife(0) = 6.83096 keV The toroidal
loop voltage becomes radially independent and takes Valye= 0.286386 V that corresponds
to the flux of the magnetic enerdy;Uioop.na = 2.863863 MW. The latter is equal to the Joule
heating and the thermal energy flux through the plasma boyiidath are 2.83863 MW). Note
that this accuracy is achieved after 1000 s. The total enefdiie poloidal magnetic field
(inside the plasma volume only) is 198.434 MJ, the totalrtterenergy of electrons 5.422 MJ.
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Test 1.1.6b. Boundary condition — prescribed loop voltage.

F'value / flag| Bnd. type / valug F(p,0) F(p,t)| D |v| s
P l2 3/0.283863V | P(0,27Ry) — o 0 0
T.12 1/1 keV P(2,1) — 1 |0/ Qon
7,110 - - - [ -] -
nell - - P2,1)| - |—-| -
nial1 - - P2, )| - |—-| -

Output: Current density, loop voltage, poloidal field energy, Paygtector, Joule heating.

Result:

This “inversed” problem arrives to a very different solutioecause of slow thermal instability
that occurs for this type of boundary conditions: the etattemperature and the total current
either grow unlimited or drop to finite values that are deiesd by the boundary conditions
for the electrom temperature. In this particular case, émral electron temperature is reduced
to 7.(0) = 3.25 keV, the flux of the magnetic energy into the plasma and thertheenergy
outflux are 1.206 MW. The energy of the poloidal magnetic fighdl the thermal energy of
electrons drop to 30.338 MJ and 3.008 MJ, respectively. $taady state is achieved after
~ 10%s.

Test 1.1.7. Non-inductive current drive.

F value / flag| Bnd. type / valug  F(p,0) F(p,t)| D |v| s
W12 2/10 MA P(0,2rRo) | - |op | 0] (%
T.12 1/1 P(2,1) — 1 |0 Qon
T, 10 - - - | - 1-] -
nell - - P2,1)| - |—-| -
nial1 - - P2, )| - |—-| -

*) Noninductive current density is set to any radial functiemmalized in a way that the total
non-inductive current is 10 MA, e.g,; = (ma?)~! x 107 A/m?,

Result:
The total current should be replaced by a non-inductiveenitrr Loop voltage and the Joule
heating drop to zero so that the electron temperature besemqeal to the edge value.
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2. Coupled equations. Cross-equation energy exchange)

Test1.2.1. Similar to I.1.3 but the equipartition term is included oe tihs.

F value / flag| Bnd. type / valug F(p,0) | F(p,t) | D |v | s
Pll - - - - =] = Comment:
T.12 4/0 P(3,1) - 10| Qi Particles and energy
Ti1l2 4/0 P(1,1) - 10| Qe must be conserved.
nel 2 4/0 P(2,1) - 1/0] 0
niil2 4/0 P(2,1) - 110/ 0
n;ol0 - - - - =] =

Output: Similar to (1) but for total energy contents.

Remark: Inthe implicitscheme, the total energy should be consemrgtda machine accuracy
provided all temperature equations are solved simultasigduonatrix inversion). For sequential
inversion of each equation a comparable quality of energysexvation can be expected if
iterations are enabled.

Result:

Because of the equipartition term only the total energy isseoved here. In the rest, the output
has the same features as in the task 1.1.3.

Test 1.2.2. Similar to 1.2.1 but a discontinuous heating term with steggtime dependence is
included  Quuise(p,t) = Qo[H(p—p1) —H(p—p2)] [H(t —t1) — H(t —t2)], where
0<p1<p2<a0, O<ti<ta<T

F value / flag| Bnd. type / valug F(p,0) | F(p,t) | D | v s
Pll - - - - | - —
T,12 410 PB.D| = [1]0] Qi+t Quis
Tipl2 410 P(1,)| - |1]0 Q.i
ne 12 410 P2,1)| - |1]0 0
niy 12 410 P2,1)| - |1]0 0
n;2l0 - - - - |- -

Output: Partial energy contents in electrons and ions.

Result:

We selectp; = 0.5m, p, = 1.5m,t; = 0.2S,t, = 0.45,Qy = 0.5 MW /m? that corresponds
T a

to ~100 MW of additional heating. " > t, then [ dt fo Qpuise AV = 0 and the energy in both

0 0
plasma components is conserved with the machine accurdeyintegrals (sums) of type (1)
slowly increase witht reaching at maximur55¢gs.
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Test 1.2.3. Particle and energy conservation. Similar to 1.2.2 but wibh-zero outflux.
Let Qi(p) = Qo[H(p—p1) —H(p—p2)], p1 =05mM,p2 =15M, qippa = é Qi(p)dV,
QO =0.1 MW/m3

F value/flag| Bnd. type /valug F(p,0) | F(p,t) | D | v s
Pll - - - - | - -
T.12 410 P(16,15) - 110 Qie
Ti112 41 i pna P(16,15) | - 110 Qe+ Qilp)
niil2 4/0 P(2,1) - 110 0
n;ol0 - - - - |- -

Output: Particle and total energy contents.
Note: Here(@), is reduced and the initial temperature increased in ordavaa a negative ion
temperature at the plasma edge.

Result:
The ion temperature achieves a steady state within 1 sy@het@mperature in 2 s. During the
further evolution the total energy contents is limited3dy zs.

Test 1.2.4. Particle and energy conservation.
Let Sz(p) = SO [H(p — Pl) — H(p — pg)], p1 = 0.5 m, po = 1.5 m, Fi,bnd = ‘[Sz(p)dv,

Qi(p) = crilipna(p)Si(p), Qec(p) = c1iTepna(p)Si(p), D(p) =1+ H(p—p3), pz=1
m, Sy =5x10"¥ m™3s7!, ¢;; = 5/2. Note thaty; ;,,, denotes conductive heat flux.

F value / flag| Bnd. type / value F(p,0) | F(p,t) | D |v s
Wil - — - | -- —
1,12 41ga=0 |PB.O|[ - [1]0]Qi+Q.
Ty 12 41 Gipna =0 P(1,1) — 110 Qe+ Q;

niil2 41T pna P(3,1) - 110 Sip)
n; 210 - - - - | - -
nel0 - - - - | - -

Output: Particle and energy contents.

Result:

The total number of particles is conserved with the machoweii@acy, i.e. the quantity (1) is
comparable with g5 (in this particular case, gradually increases ug.td00¢zs). Conservation
of energy depends on implementation of the boundary camditi Namely, the accuracy of
the scheme depends on a method (boundary type 3, 4 or 5 in ESC8pt®n) of setting edge
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conductive flux to zero. For consistent setting the congienvas fulfilled with the machine
accuracy. Otherwise, the relative error saturates at td & 0.05% that is by 13 orders
of magnitude larger than the possible best. Nevertheleking iterations to the numerical
scheme improves the energy conservation. At 2 iteratitvesgtror drops tez 700egg, at 3 and
more iterations tez 80¢gs.

Test 1.2.5. "Poloidal” field energy dissipation. FaF' = 1, D(p,t) should be replaced by
conductivityo“.

F value / flag| Bnd. type / value  F(p,0) F(p,t) | D |wv s
Y12 2/10MA | P(0,27Ry) | - |of* |0 0
T.12 1/1keV P(2,1) - 1 10| Qou+ Qi
T 12 1/1keV P(2,1) - 110 Qe
nell - - P(2, 1 |0 0
nial1 - - P(2, 1|0 0
Output: Current density, loop voltage, safety factor, poloidaldiehergy, Poynting vector,

Joule heating, energy contents as functions of time andsadi

Results:

At steady state, poloidal energy flux into the plasma coesidith the total thermal flux from
the plasma with the relative accuracy i6f-® being by 8 orders of magnitude worse than the
machine accuracy. The magnetic field energy is 198.2 MJ atiaé thermal energy 8.097 MJ,
the energy [in/out] flux 3.776 MJ, the electron-ion heat exae 1.71 MJ. Characteristic time
(skin time) is about 200 s.
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Part Il. Stiff transport.  (tbd)

A simplified “cylindrical” diffusion equation for a quantitF’ reads

oF 10 OF
|DE,(t,x =0)] <oo,  F(t,e=1)=F(t), F.= —ZF’
i

F(t=0,2) = Fy(x).

Diffusion coefficient is assumed to have the fofm= D, + D,,,.

A single equation for the main ion componentcan be used here in place Bf

The estimate of accuracy should be based on the time behafiéi) = g—i or D,, rather than
F(t,z). It would be useful to have an output for the grid quantities

T

Qf(t,zx) = —xDF,, Qs(t,z) = /dem, Qi(t,x) = %/dex
0

0

Test 11.1. Simple model.
Stiff transport is described by),,, = D; max(0, —F, — n.,.) that switches on a stiff transport
once|F,| exceeds,... The following input parameters are proposed

FQ = 01, DO = 01, Ner = ]_,
F1 - 01, D1 - 1, S - 1

Test 11.2. Stiff transport+ transport barrier.

Dy, = Dymin[max(0, —F, — n..),0.07/(—F, — n..). The added correction suppresses the
stiff transport in the range whefé&, | > 7., + 1/0.07.

The input parameters are the same as in 1.1 excepbfer 1 + P(1,0). This change restricts
an extension of the transport barrier 825 < p/ay < 0.75.

Test 11.3. If a special scheme is implemented to treat stiff transgwhttwo additional runs
should be performed for a non-stiff transpart = 0. One run should use the “stiff” numeric
scheme, another a regular scheme. The aim is to evaluatetiiss introduced by the stiff
scheme to a non-stiff transport.




