
1EFDA-ITM-WS/CC

The ITM general grid description:
A tutorial

H.-J. Klingshirn

Working Session / Code Camp
March 2011



2EFDA-ITM-WS/CC

A general grid description for 
the ITM

Why?
• Codes that treat complex geometries have to 

use possibly complex grids
• Different codes, different numerical schemes, 

different grids – but only one CPO!
• This is especially true for the 2d/3d edge codes 

that have to resolve the vessel geometry
(Other projects might be in a similar situation)

The general grid description tries to provide a 
practical, reusable solution for a wide range 

of spatial discretizations 



3EFDA-ITM-WS/CC

What is the goal?

Efficient handling of complex grids and data representations 
(up to 6d, including velocity space)...

Isogeometric
finite element 
representation
(JOREK)

Unstructured 
grids (B2.6)

...while still being easy to use for 
simple grids (e.g. structured grids)!

3d tetrahedron grids
(ASDEX Upgrade 
vessel)



4EFDA-ITM-WS/CC

CPO design example: Edge CPO
(new 4.09a version)

Standardized general grid 
description at top level 

Data stored on grid: refers to 
grid description (via subgrids, 
see later)

The types of the  grid description 
and the data fields (see later)  
are standardized and can be 
used in any CPO → allows use 
of standardized tools (plotting, 
interpolation, ...)



5EFDA-ITM-WS/CC

Grid description: Details

• A grid is composed out of individual spaces, which are themselves 
discretizations of physical space (but possibly of lower dimension 
than the grid)

• Objects in a space (called grid subobjects) are defined explicitly.
• The objects in the grid (grid objects) are then defined implicitly 

by combining the subobjects from the spaces.

Some basic definitions (examples to follow):

Array of structures:
one or more spaces



6EFDA-ITM-WS/CC

Grid & space explained: 
Simple 2d grid example

1 2 3 4 5 6

1 2 3 4 5

Node numbering

Edge numbering

1.0 2.0 3.0 4.0 5.0

Space 1
R0.0

1

2

3

4

5

1

2

3

4

0.0

1.0

2.0

ZSpace 2

● Define two one-dimensional spaces 
  to discretize the R and Z direction

● Explicitly define the nodes and edges 
  (subobjects) in the spaces
  → stored in the object description of the space

Discretization of 2d space in (R,Z) coordinates:



7EFDA-ITM-WS/CC

Storing subobject information

Node
positions

Nd subobjects (N>0): 
assembled from (N-1)d subobjects

0d subobjects: nodes

Boundaries of objects
Connectivity

These fields 
store object indices

Note: the subobjects in a space are defined explicitly. In the space
they can be identified uniquely by their dimension and their index.



8EFDA-ITM-WS/CC

Simple example (ctd.):
Implicit definition of grid objects

0.0 1.0 2.0 3.0 4.0 5.0 R

0
.0

1
.0

2
.0

Z

2d Cell: 
1d + 1d subobj.

1d Edge:
1d + 0d subobj. 

1d Edge:
0d+1d subobj.

0d Node:
0d+0d subobj.

●A grid object is built by taking one subobject from every space and 
combining them. 

●The complete grid is given as all possible combinations of subobjects.

Space 1

Space 2



9EFDA-ITM-WS/CC

Object descriptor: Notation

0.0 1.0 2.0 3.0 4.0 5.0 R

0
.0

1
.0

2
.0

Z

((1,1) (4,2))

((1,0) (2,4)) ((0,1) (5,4))((0,0) (3,3))

((c1, c2,...,cn) (i1,i2,...,in))

Object class: 
cj = subobject dim. in space j 

Object index: 
ij = subobject index in space j

1 2 3 4 5 6
1 2 3 4 5

1

2

3

4

5

1

2

3

4

Object Descriptor:

Space 1

Space 2



10EFDA-ITM-WS/CC

Object descriptor: Notation

((c1, c2,...,cn) (i1,i2,...,in))

Object class: 
cj = subobject dim. in space j 

Object index: 
ij = subobject index in space j

● An object descriptor uniquely identifies a grid object
● An extension of the notation is available to easily denote 
  groups of grid objects (see later: subgrids)
  

Some notes:

Object Descriptor:



11EFDA-ITM-WS/CC

Implicit global object order

● The subobjects in every space have an explict (local) order
 (simply the order in which they are defined)  

● For the implicitly defined grid objects, a global order is imposed
  by adopting a simple counting convention (think linear address
 computation for multidimensional Fortran arrays):

Grid objects of a common object class are counted 
by varying the leftmost index first.

 Every grid object can therefore be uniquely identified by:

Its object descriptor:
((c1, c2,...,cn) (i1,i2,...,in))

Its object class and 
global index ig:
((c1, c2,...,cn) ig)

or

(More on this later in the subgrid part)



12EFDA-ITM-WS/CC

Slightly more complex example:
A 2d edge code grid

Cell (2d subobject) numbering in space 1

A 2d grid composed out of one 2d space that defines 
an effectively unstructured grid of quadrilateral cells

((2) (813))

(Shameless plug: all plots done with the evolving Python 
 implementation of the grid service library.)



13EFDA-ITM-WS/CC

Storing data on grids
(again shown with the edge CPO)

CPO design: 
fields that hold data stored on the grid should be of the generic data 
type (complexgrid_scalar) → enables use of general tools

●Data is stored on a subgrid
●Subgrid = list of grid objects

●The data is then stored 
 simply as a vector, one entry
 per object in the subgrid

Subgrid index

Actual data: one entry per subgrid 
object, in the order defined in the subgrid
definition



14EFDA-ITM-WS/CC

Subgrid definition

● A subgrid is a selection of a subset
  of grid objects (of common dimension)

● There can be an arbitrary number of subgrid
 definitions (which are part of the grid description).

  A specific subgrid is identified by its index

● A subgrid is a list of object lists. Each object list can be either
● explicit: an explicit list of object descriptors
● implicit: an implicit list of object descriptors, selecting a 

range or an entire class of objects (see next slide)

Object class tuple

Object index list
(for explicit list)

Object index set
(for implicit list)



15EFDA-ITM-WS/CC

Subgrids (ctd.):
Implicit object list notation

((c1, c2,...,cn) (s1,s2,...,sn))Object List Descriptor:

Object class: cj = subobject dim. in space j 
(same as in object descriptor)

Object index set: specifies multiple indices
sj = [i1, i2, …, iN]      → explicit list of indices
sj = (i1,i2)                  → range of indices from i1 to i2
sj = UNDEFINED → all possible indices

Why is this important? Space splitting and implicitly defined 
object order allow efficient handling of datasets on very large 

(5d, 6d,...) structured grids. 

Object order: implicit object lists inherit the implicit object 
order intrinsic to the underlying grid definition



16EFDA-ITM-WS/CC

Subgrids example:
B2 2d cell data

● B2 plasma solution, written to
 edge CPO

● Patch plot of electron density

● Subgrid: implicit list of all 2d cells
  (~3500 cells)

(Another shameless plug: all plots done with the evolving 
Python  implementation of the grid service library.)



17EFDA-ITM-WS/CC

Subgrid example:
B2 core boundary flux

● B2 grid, core boundary. Subgrid: explicit list of 48 core faces.

Core boundary subgrid

Core boundary electron flux
(plotted vs. face number along 
core boundary)



18EFDA-ITM-WS/CC

The grid service library

This is all so complicated!
● You have to understand the grid description.
● You have to understand object descriptors and subgrids.
● You have to read and write your data to these strange
  data structures. 

I don't want to do this for my simple grids!

→This is the price we have to pay for having a general 
description that allows for complex grids.

Simple things should be simple.

The grid service library is for you. 



19EFDA-ITM-WS/CC

The grid service library (ctd.)

The grid service library is designed to help you when working
with the general grid description:

● Low-level routines: 
● access basic information (for spaces, objects, subgrids…)
● helper routines for reading and assembling complex grids

(e.g. unstructured grids)

● High-level routines: 
● Easy-to-use read/write routines for grid and data 

for specific classes of grids (e.g. structured grids)
● General visualization (1-3d plots, cuts/projections,...)
● For the future: simple data transformations 

(interpolation, operators, …)



20EFDA-ITM-WS/CC

High level service routines
Example: structured grid & data

Using the Fortran 90 implementation:

grid description structure in the CPO
write 2d grid

dim. 1: R coordinates

dim. 2: Z coordinates

subgrid identifier
(predefined)

data (2d array) data field in the CPO
(complexgrid_scalar)

Reading: equivalent routines exist

For simple grids, the details of the grid description are hidden
completely from the user by the grid service library



21EFDA-ITM-WS/CC

Grid service library:
Implementations

Supported languages:

●Fortran 90: 
● reference implementation for data structure I/O

●C
● will have functionality similar to F90 version

●Python
● focus on plotting functionality

●Besides a common core set of functions, the features of the 
different implementations will differ (depending on the needs)

Notes:

●The library is currently still evolving towards a first release
(which is expected after the release of 4.09a)

●SVN: http://gforge.efda-itm.eu/svn/itmshared/branches/grid/ 



22EFDA-ITM-WS/CC

Thanks!
For questions: hmk@ipp.mpg.de


	Slide 1
	Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

