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Motivations: W
Time-step limitations in SOLPS with drifts

Test case by David Coster - circular geometry (closed field lines).

/ptapl/onad/solps/selpsh, (/sro/Braans/ba/ Tuns/annulus/circle/case_2
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@ Without drift physics, one observes fast convergence with At = 10~ 3s.
@ We aim to develop a stand-alone code as a test-bed for models and schemes.

@ This motivates our study of the mathematical structure of the B2.5 model
[Rozhansky et al. Nucl. Fus. (2001)].
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Outline W

@ The self-consistent electric potential in a hierarchy of multi-fluid models:

me =0 equivalence  approximations
B E B
1 1

@8 FB Full system of Braginskii equations

() FBo Quasi-neutral zero-electron-mass limit of FB
(3 DFBy Drift formulation equivalent to FBy

@ B2.5 Model of the B2.5 code

@ Initial development of a test code (Marco Restelli):

» exploring numerical methods for this family of fluid models;
» addressing basic issues (sensitivity to input data, noisy sources, etc ...).
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The self-consistent electric potential in a hierarchy of multi-fluid models.

General idea:

@ Anomalous fluxes are added ad hoc later: no derivation.
Neutrals can enter either as sources or fluid species.
Divergence-free terms are kept in the equation for clarity.
Refrain from approximations as far as possible.

Emphasis on the mathematical structure of the equations and possible sources of
the instability.
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Full system of Braginskii equations (FB)
Model equations

@ Main equations of the model: for o € Sp = {various ion species, electrons},

Ong + V- (nava) = Sn,a)
Ot (manava) + V- (Manava @ va + Ta)
= —Vpa + €ana( — Vo + 22*B) + R, + Sura,
at(%pa) + V. (%pava + qa) 4+ paV - va + T : Vo = Qo + ST,as
V.-J=0,
where J =3 s €anava and Sn.a, Sm,a, and St,q are sources.
@ Closure relations for 7o, Ra, Qa, and q., satisfying

> Ra=0, > (Qa+va-Ra)=0.
a€Sp a€ESp

@ The electric potential ¢ is determined as a Lagrange multiplier for V - J = 0.
@ Without sources and with appropriate boundary conditions, energy is conserved:

1
W)= /Q (Emana|'va|2 + gpa)dv = constant,
a€Sp
as a consequence of V - .J = 0.

O. Maj (IPP-Garching) On the modeling of drifts in SOLPS SOLPS Optimization, Garching 2014 5/29



Braginskii equations with zero electron mass (FBy) W
Model equations

@ Main equations of the model: for a € Sp, = Sp \ {e}
Ong + V- (na’Ua) = Sn,ay
at(manava) + V- (manava ® Vg + Tra)
= —Vpa + eana( - Vo + %) + Ro + SM,a,
at(%pa) +V. (%pava + qa) + PV Va+ Tt Vg = Qa + ST*“’

V-J=0,
Ne = Z ZaNa,
a€Spg

0=—Vpe — ene(—Ve + 22B) + Re + Sy,
(915(%175) + V- (gpe’l}e + qe) +pev * Ve = Qe + ST,e, (7re = 0)

@ Again, ¢ is a Lagrange multiplier for V - J = 0.
@ Again, the relevant energy is conserved
_ 1 2 3 3 _
W (t) 7/9 [ > (Zm“n“|va| + 2pa) + 2pe}dV = constant,

a€Spg
= Energy conserving schemes derived by Juan Vicente Gutierrez Santacreu.
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Braginskii equations with zero electron mass (FBy) W
Determining the electron velocity

@ The electron velocity should be fully determined by the electron force balance
0=—Vpe — enc(—Veo + 22B) + Re + Sy .
@ The friction force R. on electrons is crucial:

Re :ene(JH/O'H +Ji/o1)+ Rr.

Proposition

Given sufficiently reqular ne, pe, na, va for a € Sp, and ¢, with both ne,1/n. € L*, the
electron force balance is equivalent to

J=6[-Vé+Er],
where & is bounded and positive-definite, and Er is a function of ne, Ve, Rr, na, Va,

eneEr = Vpe — R — Sne + Z €aMaVa X B/c,

a€Spg

and thus the electron velocity determined by encve = 3, €alava — J.

v
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Equivalent form of the perpendicular current density W

@ Total momentum balance equation for the model FBy:
OP+V-§S=-Vp+Jx B/c+ Su,

with momentum/momentum-flux pair

P = Z MaNaVa, S = Z MaNaVa @ Vo + Ta,
a€Spq a€Spg
where p=>"_pa +peand Sy =3, Sm,a + Sare-
@ We can solve for J, from the total momentum balance:
C

JJ_: —bep +

|B] %bX[&PnLV-S—SM].

|B

diamagnetic current

Proposition
For a sufficiently regular solution,
Ji = [6(-Vé+Er)] | = éb x Vp+ |—;‘b>< 0P+ V-5 - 5u].
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equivalence  approximations

Iﬁa S
]

@ FB Full system of Braginskii equations

(O FBo Quasi-neutral zero-electron-mass limit of FB
(O DFBy Drift formulation equivalent to FBy

@8 B2.5 Model of the B2.5 code
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Drift velocity
Basic ideas: a simple textbook example

@ Euler’s equation for an electrically charged fluid:

mn% = —Vp+en<E+ utB)

@ The perpendicular part can be rewritten by solving for « :

E><B+CB><Vp_ chxcLu
B2 enB? eB? dt

Uy ==c

ExB B x Vp 1 du

=c + ¢ - —bx —

B2 enB? We dt

N—— ~—— N—
E x Bdrift  diamagnetic drift w . inertia
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Drift velocity
Basic ideas: a simple textbook example

@ Euler’s equation for an electrically charged fluid:

mn% = —Vp+en(E+ u EB)

u(0,-) =up, att= to, plus boundary conditions.
@ The perpendicular part can be rewritten by solving for « :

CEXB+CBXVp_ chxcLu
B2 enB? eB? dt

Ul =

ExB B x Vp 1 du

=c + ¢ - —bx —

B2 enB? We dt

N—— ~—— N—
E x Bdrift  diamagnetic drift w . inertia
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Drift velocity
Basic ideas: a simple textbook example

@ Euler’s equation for an electrically charged fluid:

mn% = —Vp—i—en(E—i— ux B)

u(0,-) = uo, att = to, plus boundary conditions.
@ The perpendicular part can be rewritten by solving for w :

cEXB—l- BXVp_ch du

u| = c — X —
+ B? enB?  eB? dt
_CE><BJr CB><Vp 7ib><@
T B2 enB? We dt
—— N—— —_———
E x Bdrift  diamagnetic drift w . inertia

initial guess uo_ for fixed-point iterations.

@ This turns an initial/lboundary value problem into a fixed-point problem.
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Drift velocity
Basic ideas: a simple textbook example

@ Euler’s equation for an electrically charged fluid:

mn% = —Vp—|—en(E—|— v tB)

u(0,-) =uo, att=to, plus boundary conditions.
@ The perpendicular part can be rewritten by solving for w :

E><B+ BxVp mc du

UL =c c — —5 B X =
+ B2 enB? eB? dt
E x B B x Vp 1 du
=c + ¢ - —b
B2 enB? dt
N— %/—/
E x Bdrift  diamagnetic drift w . inertia

initial guess uo . for fixed-point iterations.

@ This turns an initial/boundary value problem into a fixed-point problem.
@ Guiding-center drifts:

V-(nu*):V-[ Cprv ]+ V— V x B.
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Drift velocity W
Drift formulation of the momentum balance equation

@ Define the current densities

J& = Eb X [0(manava) + V - (Manava @ va + Ta) — Siral,
(r) (r) _ cB x Vp
JO= 30 -
a€Spg

where {vs}a — J& is a linear operator acting on velocities {vata-

Proposition
For every ion species a, the momentum equation
Ot(Manava) + V - (MaNavVa ® va + Ta) = —Vpa + eana( — Vo + 222£) + Ry + Sar,a,

is formally equivalent to the parallel momentum balance complemented with the
fixed-point problem

r (r)
_ BxV¢ BxVp. D, [va_g ] J 1 bxJY
Yal = €53 e €qNa B2 To + ZoTs 2VJ‘Te u €aNa u ToWes €Ne
where Do = —— % (To + ZaTv) is the collisional diffusion coefficient.

v
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Drift formulation of Braginskii equations (DFB) W

Model equations

@ Definition of the parallel velocity uq, = b - v4.
@ Main equations of the model: for a € Sp, = Sp \ {e}

Otna + V- (na(uab + Uaj_)) = Sn,m
Or(manata) + V- (Manatia(Uab + vai) + ma - b) — Mana(tab + ve1) - Vb vaL
—Tq: Vb= —b-Vp, —€angb-Véd+b- Ry +b- S,

(r) by ()
B§2v¢+chvpa Dy [va 3VLT9] 4+ Ja 1 b

eqmna TeWece €Ne

Vgl = C cana B2 To+ZaTe | me 2
at(%pa) +V- (%pava + qa) +PaV Vo + 7ot Vo = Qo + ST’“’
0 (3pe) + V- (3peve + Ge) +peV - ve = Qo + Ste,

V- [6(Vé— Er)] =0,

@ Quasi-neutrality is implied.
@ Both J and v. are given explicitly as functions of the other variables.
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Drift formulation of Braginskii equations (DFB) W

Tentative iterative scheme
k k k ,k k
> 10, Ug, Pa; Pe > &
k+1
Evaluate v, | *

i+l
k+1

Solve for

k4L
Evaluate ET+ 2

Solve for ¢*+!
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Drift formulation of Braginskii equations (DFB) W

Choice of the equation for the potential

@ Two equivalent forms of the perpendicular current

Ji=[6(-Vé+Er)] | = ﬁbep—&- |—;|bx [atPJrv-S—sM].

@ Two corresponding forms of the potential equation V - J = 0:
V- [6(Vett — E;Jr%)] =0, (well-posed),
V- oy vettt — JHE] =, (ill-posed).

@ In addition, E+ does not involve the time derivative of v,.
@ However, in the “well-posed form” ambipolar terms are not automatically canceled.
@ Coupling the potential equation with the electron pressure gradients?
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equivalence  approximations

Iﬁa S
]

@ FB Full system of Braginskii equations

(O FBo Quasi-neutral zero-electron-mass limit of FB
(O DFBy Drift formulation equivalent to FBy

@8 B2.5 Model of the B2.5 code
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Approximated model in the B2.5 code (B2.5) W

Model equations
@ Main equations of the model: for a € Sp, = Sp \ {e}

atna + V- (na(uab + Uaj_)) = Sn,ay
Or(manata) + V- (Manatia(Uab + vai) + a - b) — Mana(tab + ver) - Vb vaL
—Tq : Vb= —b-Vps —€angb-Véd+b- Ry +b- S,

(r)

_ _BxVg¢ BxVpa _ Dg Vip _ 3 JI
Val = C gz T C 5% — Toiams | ne sViTle| + o,

0:(3Pa) + V- (3Pava + ¢a) + PaV - va + Ta : Voo = Qa + S7ya,
at(%pe) + V ' (%pe’ve + (Je) +pev * Ve = Qe + ST*e’
V- [oyVye—J] =0.

This reduces to the model by Rozhansky et al. [Nucl. Fus. (2001)].
@ Approximations in the drift velocity (break energy conservation):

(r) (x) (r)
JE g LobxJP
€aMa  €Ne TeWee  €Me
single ion species higher-order term neglected

@ Remark: The potential equation in the iterative scheme becomes ill-defined.
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A few conclusions from the theory W

equivalence  approximations

B EE .

@ FB Full system of Braginskii equations

(J FBy Quasi-neutral zero-electron-mass limit of FB
() DFBy Drift formulation equivalent to FBg

@8 B2.5 Model of the B2.5 code

@ Relationship among a class of multi-fluid models.

@ An extended version of the B2.5 model, which is equivalent to Braginskii equations
with zero electron mass and quasi-neutrality.

@ Two equivalent forms of the potential equation.

@ Possible sources of the step-size limitations in B2.5:

» lll-defined boundary value problem for the potential.
» Fixed point iteration.
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Initial development of a new code
Concept of the new code (by Marco Restelli)

@ A code for multi-fluid models of the plasma edge which
» provides a test-bed for numerical schemes;
> allows us to explore the various formulations and models;
» possibly includes uncertainty quantification (perturbation of data, noise, ...).
@ Geometry:
» Unstructured grid in generic coordinates (avoid local coordinate patches).
» Possibility of flux-surface alignment and grid refinement.
@ Space discretization:
» Finite element method on unstructured grids.
» SUPG stabilization of the convective terms.
» MPI parallelization with domain decomposition.
» MUMPS/PASTIX/PETSC!/... libraries to solve the linear systems.
@ Time discretization:
» Standard diagonally implicit;
» Energy-conserving slitting schemes (Juan Vicente Gutierrez Santacreu).
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Initial development of a new code
Example of grid in circular geometry (by Marco Restelli)
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Initial development of a new code
Partition of the grid (by Marco Restelli)
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Initial development of a new code W

Parallel advection - first-order upwind stabilization (by Marco Restelli)
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Initial development of a new code W

Parallel advection - second-order upwind stabilization (by Marco Restelli)
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Open discussion:
Testing the coupling between the potential and the electron pressure gradient

@ Sketch of the coupling:

electron force balance

TN

Vpe v¢

E x B-drift

@ Minimal set of equations:

on+V - (nvE — DVJ_n) =35,
Ot %pe +V- [%pe(UE — J/(ene))] +p.V - (UE _ J/(ene)) -0,
V-J=0, J=-0yV¢—0wgVLi¢+5(Vpe — Rr)/(ene),

where S is a possibly noisy source, ne = Zn, p. = n.T. and

BXNO = 0.71nev T, — O

bx VTe.
B2 QWeeTe

VE = C
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Open discussion: W
Testing the coupling between the potential and parallel momentum

@ Minimal set of equations:
On+V - (nub+vg) = S",

Oc(mnu) + %V - [Rmnu(ub+ vq) — RvVu] = =V p+ Sﬁw,

V- (UV¢) =V f(n,Vpe,V|Te, Vp),
with prescribed temperature profiles and

Pe = neTe, pi = nTi, P = Pi + Pe,
BxVé¢ N BxVpi D"Vn D'Vp

Vg = C
B2 ZenB? n n

v De B xV
f:a”(i—i—o.ﬂV”Te/e)b—l—c o
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Backup slides
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Full system of Braginskii equations (FB)
Energy conservation

Proposition
A solution n., va, pa, ¢ is such that
BE+V -F=-V¢-J+ > (Sra+vaSma— 3Malval’Sn.a),
aESp
where the energy/energy-flux pair is
€= (3manalval® +3pa), F= 3 |(3manalval’ + §pe)va +do+7a - va].
«a€Sp a€ESp
If S, =0, Sm = 0, St = 0 and the normal components F,, and J,, vanish on 052,

/ EodV = Z / (%7)’Lana|va|2 + %pa)dV = constant.
Q Q

aESp
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Braginskii equations with zero electron mass (FBy)
Energy conservation

Proposition
A solution nq,va, pa, ¢ Satisfies the energy balance

0:&0 +V - Fo=—Vo¢ - J+ sources
with energy/energy-flux pair

SO = Z (%mana|va|2 ar %pa) ar %pe,

a€Spg

]:O = Z [(%mana|va|2 + gpa)va + qa - Tq - va:l aF gpeve + Qe-

a€Spg

@ Energy-conserving splitting schemes for this system have been derived by
Juan Vicente Gutierrez-Santacreu.
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LN

Sketch of the proof of the first expression for J and wv..
Parallel projection:

0 ::——‘7”pe-+ eneY7”¢-+-eneJ“/UH +’1{TH‘+'SA4@”,
which gives
Jy=0oy[=Vé+Er)], Erj=(Vipe— Rr| — Suep)/(ene).
The perpendicular projection:
o1 |B|

encc ’

(I—rbx)JL =—-01[Vidp+EryL], k=

where
Ery =(Vipe — Rri — Smer + Z €aNaVa X B/c)/(ene).
a€Spg
The result follows from the fact that the matrix (I — kbx) is invertible when restricted to
vectors perpendicular to b. Also (I — kbx) restricted to perpendicular vectors is
positive-definite as J, - (I — kbx)J. = |J1|?, hence so is its inverse. O

v
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Ty

Sketch of the proof on the drift velocity.
Recall the definition (extended to multiple ion species with quasi-neutrality)

3Zqng

Ro = —eana(J) /oy + JL/oL) — Rr, Rr = —-0.T1naZ.VTe — 5 bx VTe..

WeeTe

Multiply the momentum equation by - Bx and solve for v, 1,

aNa 32
_ BxV¢ B X Vp, 3 BxJ.
Val =€ B2 e eqna B2 2WeeTe e\B| aB Vet T m o B2
C
+ WB X [at(manava) + V- (MmanNeve Q Vg + Ta) — SM,G].
Upon substituting the expression
Ji = [6(-Vé+Er)], = ﬁb X Vp + |—;|b x [P+ S = Su]

the diamagnetic current combines with the V | T.-term to give the classical diffusion,
thus leaving J(j). The expression for D, follows from o, = nee?7./me., and the
definition of partial temperature T, + Z, T,

p=Y nalksTe) = Y nakp(Tu+ ZoTe). O

a€Sp a€Spg

4
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