

PARSOLPS

Tamás Fehér¹, Lorenz Hüdepohl²

¹High Level Support Team, IPP ²Rechenzentrum Garching

WPCD SOLPS Working Session, 10-12.12.2014

PARSOLPS project

- Scrape-Off Layer Plasma Simulation
- Main components:
 - B2: fluid code for edge plasmas
 - EIRENE: Monte-Carlo code for neutral transport
- Improve parallel performance of SOLPS 5.0
 - OpenMP parallelization of B2.5
 - Couple with EIRENE

Outline

- Quick overview:
 - Previous work
 - Improvements & speedup
- Details:
 - OpenMP overhead
 - Speedup of B2 Subroutines
 - Bottlenecks
 - Correctness

Previous work & Amdahl's law

- 4 OpenMP parallel loops by F. Reid
- Speedup is limited by the parallel fraction
- Testcase: ITER H+T+He+Be+Ne+W: 98 species

Previous work & Amdahl's law

HLST

- 4 OpenMP parallel loops by F. Reid
- Speedup is limited by the parallel fraction
- Testcase: ITER H+T+He+Be+Ne+W: 98 species

Improving parallelization

PARSOLPS

B2 speedup: 6x

- Testcase: ITER D+T+He+Be+Ne+W
- Parallel fraction 91%
- Run on 1 Ivy-Bridge node (2x10 cores) @ RZG Hydra

Outline

Quick overview:

Previous work

Improvements & speedup

- Details:
 - OpenMP overhead
 - Speedup of B2 Subroutines
 - Bottlenecks
 - Correctness

OpenMP parallelization

Sequential execution:

Parallel Task I Parallel Task II Parallel Task III

Parallel execution:

OMP loop overhead: 1-4 µs

EPCC OpenMP Microbenchmarks

OMP loop overhead: 1-4 µs

- Memory transfer of 1 radial grid (98x38 elements) 4µs
- Arithmetics with several grids >20µs
- 3D arrays (species & radial grid) (98x98x38) ~ 1ms

B2 Callgraph

Speedups

14/23

Speedups

15/23

Speedups

Memory bottleneck

- Lot of data, few FLOPs / data
- Memory bandwidth limits the achievable speedup

memory bandwidth (GB/s)

Memory bottleneck

- Lot of data, few FLOPs / data
- Memory bandwidth limits the achievable speedup

memory bandwidth (GB/s)

Bottlenecks in B2

Bottlenecks in B2

Correctness

- Unit test framework:
 - Test programs generated
 - For every modified subroutine
 - Test all input/output data and side effects
- Complete tests:
 - Test the whole program
 - Bit-identical results

(until a certain point in optimization)

• Tests are successful: relative error is 10⁻¹³

- OpenMP parallelization of B2.5:
 - 20+ subroutines parallelized
 - 6x speedup for ITER test case
 - Carefully tested
- Ongoing work:

Summary

- Couple OpenMP B2 with MPI EIRENE
- Real world test cases
- Further improvements to reach bottleneck

Unit test generator

Test side effects

Full coverage

B2 Testcases

PARSOLPS

- Parallel fraction depends on simulation parameters
- Timesteps, switches, compiler options
- ITER D+T+He+Be+Ne+W, AUG_16151_D+C+He

B2 Callgraph

Next year: Hybrid MPI-OpenMP

