
Using XML for Code Specific Parameters

C. Konz

ITM TF Kepler Training, Cadarache
May 4, 2009



Outline:

• Code Specific Parameters

• Proposed Approach

• W3C XML Schemas and F95 XML Parser

• Tools for Autogeneration of Schemas



XML Use for ITM Data Structures

Motivation:

• structures form the basis of
objects (Consistent Physical Objects
(CPOs))

• organize data exchange between
codes and database

• tree-like hierachical structures

• need for a highly flexible data format
→ XML

• need for self-descriptive format →
XML Schemas

• need for a convenient way of
generating Fortran and C include
files → XSLT



Code Specific Parameters

All parameters which are specific to the code (like switches, scaling
parameters, and parameters for built-in analytical models) as well as
parameters to explicitly overrule fields in the ITM data structures. Generally
no data (should go into CPOs).

Proposal:
As the rest of the data structure, all code specific parameters should be
given in XML format, i.e., in form of an XML string.



Example: input ilsa.xml



Why XML?

• extremely versatile markup language (’generalisation’ of HTML)

• self-describing data through use of DTDs (document type definitions) or schemas

• simple to edit: plain ASCII, similar to HTML

• but can handle all levels of complexity

• large and fast growing user community

• large infrastructure of tools for XML creation, manipulation, and usage: XPath,
XPointer, XSLT, XSL-FO, CSS, parsers, editors, browsers, etc.

• already in use for CPO definitions

• allows separation of generic tools and code specific parameters



Proposed Approach:

Step 1: Strip structure of code specific parameters (i.e. names, types, structures,
dimensions, allowed choices and ranges, etc.) into a separate file, a so-called W3C
XML Schema.

Advantages:

• no format specific read subroutines needed anymore

• all tools can be made generic

• all code specific information stored in one single external file

• creation of the schema is a ’once-in-a-code’s-lifetime’ event

• later changes very simple through changing the schema

• enables input checking before running the code

• schema serves as minimum documentation for input



Proposed Approach:

Step 2: Convert former input files into XML files which are instances of the XML
schema of the code.

Advantages:

• text input files easier to understand by user

• same advantage as namelist: input does not have to be complete

• free order of input parameters as long as structure is not changed

• possibility to define beginner’s and expert’s settings

• input checks possible

• XML can be used for namelist input as well as any other format



Proposed Approach:

Step 3: Use generic tools (F95 XML Parser, string manipulation toolbox,
CREATE SCHEMA, CREATE ASSIGN, schema based GUIs, open source
XML tools) to automatically generate W3C schemas, modify code specific parameters
and read them in from a file/database.

Advantages:

• generic tools have to be developed only once and can be used for any code

• generic tools as separate library - easier to maintain

• GUI development or use of existing GUIs become possible (e.g. xforms in a browser
as suggested by G. Huysmans)

• users do not need to know about XML at all

• developers need to know only very little about XML

• tools for creation of a skeleton XML schema and the required assignment subroutine
in Fortran are available



Lightweight FORTRAN parser for XML documents:

• compact (< 600 FORTRAN lines), efficient, and fast parser

• parses XML documents with arbitrary depth and complexity (except for attributes)

• based on W3C XML Schemas (can be used to validate XML documents)

• uses tree-like lists with parent, child, and sibling pointers

• possible to incorporate namelists (FORTRAN read from strings)

• tag names and value lists of arbitrary length (dynamical memory allocation)

• available as module euitm xml parser (no dependencies)

• first parses the code specific W3C schema, then parses the entire XML document
sequentially like SAX

• comes with useful subroutines in xml tools.f90 and
string manipulation tools.f90 (to be expanded)



Tree Structure



euitm xml parse:

• parses the schema and builds an empty tree with the structure described by the
schema: associates the corresponding pointers, allocates the tag names cname and
fills in the tag names

• parses the actual XML document and fills the parsed values cvalue into the tree

• returns the complete tree in parameter list and the number of successfully
parsed parameters nparm



Calling the Fortran XML Parser:



assign code parameters:

• sets pointer to head of list parameter list%first

• assigns values to in-code variables by stepping through the tree and using select
case constructs and the interfaces in string manipulation tools.f90

• finally destroys the tree



Creating Schemas with CREATE SCHEMA:

Create a parameter list in parameter list.txt:

• precede namelist names with ’-+’ level identifiers

• list name, type, and dimension for each parameter in namelist

• specify length of stringths with ’*’ right after ’string’ type

• add comments following ’ ! ’

• names must be alphanumeric, no special characters, no spaces, underscores allowed



Run CREATE SCHEMA:

• move
parameter list.txt
into input/

• gmake -f makefile pgi
in obj/

• ./create schema.e in
run/

• ⇒ w3c schema.xsd in
output/



Polish and improve your schema (optional):

• add minOccurs="0" if parameter is optional

• add range restrictions for integers and floats by defining new simpleTypes using
restriction with minInclusive and maxInclusive or minExclusive and maxExclusive

• define allowed options for strings or integers using pattern

• limit length of arrays by using maxLength

• etc., etc.



Run CREATE ASSIGN:

• move parameter list.txt
into input/

• move w3c schema.xsd into
input/

• gmake -f makefile pgi in
obj/

• ./create assign.e in run/

• ⇒
assign code parameters.f90
in output/



Resources:

Join project XMLLIB under GForge:

http://gforge.efda-itm.eu/

Fortran 90 XML Parser:

http://gforge.efda-itm.eu/svn/xmllib/trunk/parser

Schema Generator CREATE SCHEMA:

http://gforge.efda-itm.eu/svn/xmllib/branches/create schema

Generate assign code parameters.f90 with CREATE ASSIGN:

http://gforge.efda-itm.eu/svn/xmllib/branches/create assign



GUI for Code Specific Parameters (proposal by G. Huysmans):

Use browser to interface XML documents based on W3C schema.

XForms: ’XML application that represents the next generation of forms for the Web.
By splitting traditional XHTML forms into three parts - XForms model, instance data,
and user interface - it separates presentation from content...’ (W3C)

• takes a W3C XML schema to generate the fields in the form

• uses an XML document to fill data into the fields (default values possible)

• XForm is an XHTML file created from the XML schema using a stylesheet (done
only once)

• existing extensions to Firefox 2 and 3 required



(by courtesy of G. Huysmans)



XML Tools:
tons of open source XML tools available

xmlstarlet carries out various XML operations, including validation against DTDs and
schemas (http://xmlstar.sourceforge.net/).

Examples:

To test whether a file is well-formed XML:
xml val -w input helena.xml

To test a file against an XML schema:
xml val -e --xsd helena schema.xml input helena.xml

IBM XML Schema Quality Checker:
Checks for problems in W3C XML Schemas, and clearly identifies any problems found
(http://www.alphaworks.ibm.com/tech/xmlsqc).

To check a schema file:
ibmsqc helena schema.xml



Short Introduction to W3C XML Schemas:

• Among other schemas (RELAX NG, Schematron) W3C XML Schemas are
directed toward describing how elements are arranged in a document (like the
syntax or grammar of a language - your personal ’XML language’).

• Other than DTDs, W3C XML Schemas can also constrain the type of data in an
element.

• XML Schemas are themselves XML documents, i.e., allow for checks for
well-formedness and validity



Example: root element and container elements



Example: string with prescribed values

Example: string with length constraint

Example: integer with minimum value



Example: user defined simpleType unit float

Example: array of user defined simpleType

Limitation: no arrays of complex types allowed!
(issue with arrays of complex numbers for instance; may hopefully be lifted in the near
future)


