
Training session 4-6 May 2009

ISIP tools training

B. Guillerminet for the ISIP team

https://portal.efda-itm.eu/portal/authsec/portal/itm/ISIP
isip@mail.efda-itm.eu

4/05/2009

Training session 4-6 May 2009

ITM framework

• What is it?
– Set of tools: design, running, visualization, post-processing … tools
– Set of resources: gateway, euforia, data

• Status-Road map

• Contents of the training

• Introduction to KEPLER

• KEPLER in practice

• Advanced use of KEPLER

Training session 4-6 May 2009

ITM framework: what is it?

• Set of tools :
– Data:

• Standard naming: CPO (comprehensive description of a Tokamak/plasma through the
CPOs)

• Standard access: UAL (local, remote, GRID, HPC). Hidden data storage. jTraverser,
Jscope

• Experimental data: exp2ITM
– Parameters setting of a simulation

• Shot, time step, duration, Heating systems, …: ISE
– Workflow/orchestration: KEPLER
– Integration of codes: FC2K, WS2K
– Monitoring: ISE (UAL data), Migrating desktop (jobs), Kepler actors (wf data)
– Visualization: ISE, Numplot, Visit, Matlab, Scilab
– Post-processing: Numpy, Matlab, Scilab

• Set of resources:
– Cluster at Portici: Gateway
– GRID & HPC computers: EUFORIA
– HPC-FF at Juelich

Training session 4-6 May 2009

Status-Road map

• Current version: v1.0 (released on December 08)
– Data structure: 4.06d
– UAL (CPO & time slice)

• Local on the gateway: Fortran (g95 & pgi), C, C++, Java (1.5 or +), Matlab.
• GRID: Fortran (g95) March 2009
• HPC-FF: Fortran (g95 & pgi) 28 April 2009

– Data:
• Shot 3, run 1

– Experimental data: exp2ITM for TS & JET
• JET: ?
• Tore Supra: 40000

– Data storage:
• MDSplus
• HDF5
• Memory (thread version => ok for multicores but not available for multi-nodes)

– ISE (ITM Simulation Editor): released in June 2008 but due to change in the run number
management, it must be reengineered

– KEPLER: release 1.0, one UALinit & one UALcollector
– FC2K: version 1.4 no time slice
– Visualization: using KEPLER actors
– Matlab

• Additional tools:
– Numplot: standalone tool (available now)

Training session 4-6 May 2009

Status-Road map

• version: v1.1 (released on May/June 09)
– Data structure: 4.06d
– KEPLER: release 1.0, new version of UALinit & UALcollector

(occurences + several UALinit or UALcollector)
– FC2K: version 1.4b with time slice

• version: v1.2 (released on July 09)
– Data structure: 4.07
– ISE (ITM Simulation Editor)
– Visualization: using numpy actors + VISIT

Training session 4-6 May 2009

Training

• Contents:
– Data (presented by F Imbeaux):

• CPO
• UAL
• exp2ITM

– Workflow/orchestration: KEPLER
– Integration of codes: FC2K

– ISE (not presented but … slides available)
– Numpy, Visit, Matlab (not presented but …)

Training session 4-6 May 2009

Introduction to KEPLER

• Workflow design:
– Why an orchestration tool
– Introduction to KEPLER: terminology
– A few actors
– Computation model & directors
– Fusion workflow:

• Building simple workflows:
– getting a CPO & plotting some data
– Reading & updating a CPO

Training session 4-6 May 2009

Orchestration tool
• Fusion simulation:

– Complex workflow => nested workflows
– Different model of computations (loop

on model time, solver, sequential
processing, branches, parallel
computation …) => different directors

Choice of KEPLER

Training session 4-6 May 2009

KEPLER
Based on Ptolemy II (Berkeley), San Diego, world wi dely used, friendly tool

ORNL

Cray XT4
Opteron
cluster

Command & control site

40 GB/s

HPSS

Pull data

Used for:
• Simplify and

automate the
workflow (SDM,
CPES …)

• Coarse grained
programming (one
instruction is a big
chunk): assembling
components

• Graphical design

• Mixing complex
models of
computation

Training session 4-6 May 2009

• Kepler workflow
– to accomplish all these

tasks
– 1239 (java) actors
– 4 levels of hierarchy

– many instances of
ProcessFile and
FileWatcher composite
actors
“workflow templates”

43 actors, 3 levels

196 actors, 4 levels
30 actors

206 actors, 4 levels

137 actors
33 actors

150
123 actors

66 actors
12 actors

243 actors, 4 levels

Training session 4-6 May 2009

KEPLER
2 main usages

=>design of workflow
=>execution of the workflow

Run control buttons Model-building area

Library of
components

Navigation
area

Training session 4-6 May 2009

KEPLER
Terminology:

• Manager
• Single (suspend/resume…)

• Directors
• Scheduler of the actors

(components)

• Actors
• Ports: Input & Output of an

actor

• Parameters:
• Shared by the actors

• Will be detailed in the next
session

Training session 4-6 May 2009

ACTORS
Components of the workflow:

• Actors could be nested

• Fusion codes: Helena, Mishka, Orbit …

• Categories
• sources

• Const, string, clocks
• Ramp, sinewave, shell, …

• sinks
• Display, XYZplotter, timedplotter
• Recorder, …

• Array
• Arrayextract, arrayminimum,

arraysort, …
• Conversion

• Complextopolar, stringtoxml, …
• Flow control

• Switch, Sampledelay, Exit, …
• I/O

• Filereader, writer, …
• Math

• Average, …
• Matrix
• Random
• Signal processing

• Creation of actors will be detailed in
the next session

• See “ActorReference.pdf”

Training session 4-6 May 2009

Computation models & directors
Directors

• Tell the actors when it has to produce its output = order in which they should execute

• 5 basic schedulers (directors):

• DATA DRIVEN
• SDF

• Synchronous data flow: fairly simple, sequential wo rkflow
• DDF

• Dynamic data flow = SDF with loops
• PN

• Parallel processing on distributed computing system s

• TIME DRIVEN
• CT

• Continuous time driven
• DE

• Discrete event: modelling time

• MIXING DIRECTORS

• Beware: workflows and actors could depend on the di rector

Training session 4-6 May 2009

How to choose a director

Training session 4-6 May 2009

Design of a workflow (1)
Design
1. Choose your actors (for instance constant, addsub stract & display: use the search cmd)
2. Drag & drop them in the design area
3. Connect the actors => draw a link between input & output port
4. Define the director (SDF) and its parameters (num ber of iterations)

Training session 4-6 May 2009

Creating an actor in 5 steps

1. Identify your CPOs in & out
2. Turn code into a subroutine with CPOs as argument
3. To make sure the code handles the CPOs correctly, run it in a

“testbed”
4. Make a library of your routine (compilation with t he –fPIC option is

essential).
5. Run FC2K

Prerequisite:
1. Install a private version of Kepler in your direc tory (available on /afs/efda-

itm.eu/project/switm/kepler/4.06d/kepler.tar)
>cp /afs/efda-itm.eu/project/switm/kepler/4.06d/kep ler.tar $HOME
>tar xvf kepler.tar

2. Set the environment variables with ITMv1
>source /afs/efda-itm.eu/project/switm/scripts/ITMv 1 kepler test 4.06d (where kepler

is the directory of your KEPLER version; use public for the standard KEPLER
version)

Training session 4-6 May 2009

• A data structure describes
how the data in a CPO are
organised.

• The data structures are
defined with XML schemas.

• The code developer only
needs to know about the
organisation itself.

• ITM tools automatically
generate type declarations for
inclusion in a code so that
access to data is readily
available.

Example:
equilibrium
CPO

In Fortran90 the
CPO is just a
derived type

Step 1

Training session 4-6 May 2009

Step 2
• Turn code into a subroutine with CPOs as argument

(example of a code which extract the pressure from the
equilibrium CPO).

subroutine cpo2ip(equi_in, ip)
use euitm_schemas
use euITM_routines
implicit none
integer,parameter :: DP=kind(1.0D0)

type (type_equilibrium),pointer :: equi_in(:)
integer :: ip(20)

write(*,*) 'pressure: ',equi_in(1)%profiles_1d%pressure
do i=1,20
ip(i) = int(equi_in(1)%profiles_1d%pressure(i))

enddo
write(*,*) 'ip:',ip
return

end subroutine cpo2ip

All the ITM type declarations
are included here

Declaration of
the equilibrium
CPO

Get the pressure
and fill a local array

Input arguments can be CPOs, integer,
floating point, …: single or array

Training session 4-6 May 2009

Step 3
• To make sure the code handles the CPOs correctly

run it in a “testbed”; F90 example:

• One can start with a very
simple test_bed program.

• Shown on the left is an
example with only an
equilibrium CPO as input

• Programs of this type with
their Makefile are available
on the Gateway for copying

Example for
“mycode”

Specify
“mycode”

Run “mycode”

Training session 4-6 May 2009

Step 4
• Once the code runs correctly in the test bed it is time to

make a Kepler actor of it.

• Make a library of your routine (either static, mylib.a, or
dynamic, mylib.so; compilation with the –fPIC option is
essential). Example for cpo2ip.f90:

• F90=pgf90

• COPTS= -r8 -Mnosecond_underscore -fPIC
• LIBS= -L/afs/efda-itm.eu/project/switm/ual/lib -lUALFORTRANInterface_pgi
• INCLUDES= -I/afs/efda-itm.eu/project/switm/ual/include/amd64_pgi

• all: libcpo2ip.a

• libcpo2ip.a:cpo2ip.f90
• $(F90) $(COPTS) -c cpo2ip.f90 ${INCLUDES} $(LIBS)

• ar -rv libcpo2ip.a cpo2ip.o
• clean:
• rm *.a *.o

Training session 4-6 May 2009

Step 5
• Run the KEPLER

actor generator
script: FC2K

• isip = folder for description
storage

• Name of the actor

• Name of the subroutine (no
underscore allowed)

• Input & output arg.

• g95, pgf90, C, C++

• Your code

• Use $KEPLER, $PTII &
$UAL

Training session 4-6 May 2009

• Add the libraries

Training session 4-6 May 2009

• The actor generator creates a “wrapper” for the code , it
manages the call to UAL etc.

• Stored in (where xxx is the actor name) :

• $KEPLER/src/cpp/itm/xxx (Makefile, FortranWrap.f90, libxxx.a,
libxxx.so, …). “>make” & “>kepler”

• $KEPLER/src/eu/itm/xxx (xxx.java & JavaJniCall.java)

• $KEPLER/kar/actors (xxx.kar)
• $KEPLER/lib (libxxx.so)
• $KEPLER/build/src/cpp/itm/xxx copy of $KEPLER/src/cpp/itm/xxx
• $KEPLER/build/src/eu/itm/xxx copy …
• $HOME/.kepler keeps a cache of your actors!!

Training session 4-6 May 2009

• A few tools to share actors:

• >rmactor xxx (remove the actor xxx from your $KEPLE R
version)

• >getactor xxx Get the actor xxx from $KEPLER and build
xxx.tar (tar tvf xxx.tar to look at its contents)

• >putactor xxx Put the actor contained in xxx.tar into
$KEPLER
– Then update your KEPLER version by:
– cd $KEPLER
– ant buildkarlib

• These scripts are in /afs/efda-itm.eu/project/switm /scripts

TIPS

Training session 4-6 May 2009

Building your workflow

Training session 4-6 May 2009

Using KEPLER (“>kepler”), look for your actor and c opy it
to the design area

•Input port:
“equilibrium” CPO

•Output port:
Array of integer

Training session 4-6 May 2009

Fusion workflow (1)

Design
1. Connection with the UAL: reading the database and storing in memory UALinit
2. Insert your actor/workflow
3. Store the simulation in the database: UALcollecto r

Training session 4-6 May 2009

Add the actor which connect to the ITM database

Add the
output
CPOs

Training session 4-6 May 2009

Add the Director (Synchronous Data Flow)

Add the
inputs:

•Shot

•Run

•machine

Training session 4-6 May 2009

Run the workflow

Training session 4-6 May 2009

A reminder: Code to KEPLER
• Port your code to the Gateway
• Identify relevant CPOs
• Make a subroutine of your code that has CPOs

as input/output or integer, …
• Run it in a test bed to check that the CPOs are

correctly implemented.
• Make a library of the routine: mylib.a or mylib.so
• Use FC2K to add your code in $KEPLER
• Include your new actor in a workflow and press

run
• And Bob’s your uncle (hopefully).

Training session 4-6 May 2009

Advanced use of KEPLER

• Directors

• Iterations

• Debug

Training session 4-6 May 2009

How to choose a director

Training session 4-6 May 2009

Design of a workflow (1)
Design
1. Choose your actors (for instance constant, addsub stract & display: use the search cmd)
2. Drag & drop them in the design area
3. Connect the actors => draw a link between input & output port
4. Define the director (SDF) and its parameters (num ber of iterations)

~guillerm/public/training/add_with_SDF.xml

Training session 4-6 May 2009

Design of a workflow (2)
Outcome with PN director
1. With PN, scheduling is done by each thread (actor) => no global scheduling

Endless

Trick
1. Constant provide a value at

each step
2. PN will stop if no more

datatoken source available
3. Use “SingleFireConstant”

instead

~guillerm/public/training/add_with_PN.xml

Training session 4-6 May 2009

Design of a workflow (3)
Outcome with PN director
1. With PN & one single fire => OK

End after one
iteration

Training session 4-6 May 2009

Differential Equations

Could be written as

Could be
implemented as

Training session 4-6 May 2009

Differential Equations (2)

Example of 2 coupled
differential equations

Using the CT director

Training session 4-6 May 2009

How to iterate?(1)
Different ways

1. Iterations in the Director (seen previously)

2. Ramp or repeat actors
• Ramp = “for (i=initial;i=i+step;i<final)”
• Repeat = repeat the same input some specified number of times

3. Using arrays & Rexpression

4. Using composite actors (encapsulate the iteration s in a single actor)

5. Feedback connections
• Beware: how to start with some directors (SDF for i nstance)

6. Using map (Java)

Training session 4-6 May 2009

How to iterate?(2)
Using the RAMP actor (for i=0;i++;i<10)

~guillerm/public/training/ramp.xml

Training session 4-6 May 2009

How to iterate?(3)

Using a Feedback connection (SDF)
Don’t know how to start => error

Trick:
Add a null time delay => start from

sampledelay output (0..3)

~guillerm/public/training/loop_SDF.xml

Training session 4-6 May 2009

How to iterate?(4)

Using a Feedback connection (DDF)
Iterations=4

Using PN:
with single firing constant

~guillerm/public/training/loop_DDF.xml

Training session 4-6 May 2009

How to iterate?(5)

Using a Feedback connection (CT)
Duration=100s, step=0.1s

~guillerm/public/training/loop_expression_CT.xml

Training session 4-6 May 2009

How to iterate?(6)

Using a Feedback connection (SDF)
Iterations=100

Using a Feedback connection (PN)
Iterations=100 need a stop
See $Kepler/demos/SEEK/DiscreteLogistics_PN_Directo r.xml

~guillerm/public/training/loop_expression_PN.xml

Training session 4-6 May 2009

A more complex fusion workflow

Training session 4-6 May 2009

How to debug?

Different ways

1. Animate the workflow

2. Listen to:
• Actor
• Port
• Director

3. Using the “Provenance” actor

Training session 4-6 May 2009

How to debug?(2)

Animate the workflow
• Specify the time in ms
• Run=>active actor is in Red

Training session 4-6 May 2009

How to debug?(3)

Listen to
• Director
• Notify the actions

Training session 4-6 May 2009

How to debug?(4)

Listen to
• Actors
• Notify the actions

Training session 4-6 May 2009

How to debug?(5)

Listen to
• Ports
• Show the data

