
ITM Training Session March 2012
1

The ITM General Grid Description - Tutorial
H.-J. Klingshirn

TF Leader : G. Falchetto,
Deputies: R. Coelho, D. Coster

EFDA CSU Contact Person: D. Kalupin

ITM Training Session, March 2012
IPP Garching

ITM Training Session March 2012Conference name, data and Presenter
2

CPOs and discretizations

• “Consistent physical object”: one CPO per physics problem
– but many codes with different numerics / discretizations

• In most CPOs: specific discretizations explicitly assumed in the
CPO design. Examples:

– Core CPOs (coreprof/coretransp/coresource): 1d radial grid

– Equilibrium CPO: choice of rectangular or triangular 2d grids

• Can't support every possible discretization explicitly in the CPOs

• Can't (and don't want to!) force use of a given discretization,
especially for problems with complex geometry

ITM Training Session March 2012Conference name, data and Presenter
3

Complex discretizations

…realistic device
geometry…

…unstructured
grids…

…complex geometry
representations…

B2.6

JOREK

ITM Training Session March 2012Conference name, data and Presenter
4

General grid description

Approach: separation of concerns
• The CPOs define what quantities are stored (physics)
• How they are stored (numerics) is up to the code

The ITM General Grid Description makes this separation
of physics and numerics possible:

• It provides a data structure that can efficiently store a wide
range of different discretizations with arbitrary dimensions

• By designing CPOs with this data structure, the choice of
discretization is deferred to the code

ITM Training Session March 2012Conference name, data and Presenter
5

ITM General Grid Description:
central components

1. A standardized method & conventions how to define and
write down the details of a spatial discretization

2. Standardized data structures, designed to be part of
CPOs, for

• the grid itself

• data stored on the grid

1. A dedicated software library (the Grid Service Library)
helping codes to read, write and interpret grids and data

ITM Training Session March 2012Conference name, data and Presenter
6

Does this work? Yes :)

 Supports wide range of grids in arbitrary dimensions
 Large high-dimensional grids & data sets possible with

very little overhead
 Extensible to support complex geometry and data

representations
 “Simple things are simple, complex things are possible”
 Allows us to develop general tools for data manipulation

and visualization

…but obviously it’s not the silver bullet for everything.

...and there is still the need to defined standard
discretizations or conversion procedures to make
actors interchangeable

ITM Training Session March 2012Conference name, data and Presenter
7

…all possible with general tools.

ITM Training Session March 2012
8

The user perspective

What does it mean for the user?

• CPO Designer

– CPOs have to be defined using the GGD data types

• Code developer

– When writing to the CPO, the grid has to be defined explicitly

– A code reading the CPO has to interpret the given grid

• Which can also mean to indicate “can’t handle this”

– Code coupling still requires careful thought:

• define standard discretization(s) for specific coupling scenarios, or

• write general coupling code that can handle different discretizations

– There is the “Grid Service Library” to help you with all this

• Code user

– General purpose tools can be used to work with CPOs using the General
Grid Description

ITM Training Session March 2012
9

CPO Layout (example: edge CPO)
Grid data structure

Standard grid data structure:
complexgrid (defined in utilities.xsd)

• typically placed in same hierarchy level as associated fields
• multiple grid definitions per CPO possible

ITM Training Session March 2012
10

CPO Layout (example: edge CPO)
Data fields

•CPO data fields: standard data type complexgrid_scalar
•use arrays of scalars to allow storage on multiple subgrids

ITM Training Session March 2012
11

CPO I/O in codes:
Writing grids

standardized
coordinate types

grid data structure

Grid id / name

node positions

ITM Training Session March 2012
12

Simple 2d structured grid

0.0 1.0 2.0 3.0 4.0 5.0
R

0
.0

1
.0

2
.0

Z

2d structured grid in the R,Z plane

ITM Training Session March 2012
13

Subgrid: nodes

0.0 1.0 2.0 3.0 4.0 5.0
R

0
.0

1
.0

2
.0

Z

• subgrids are identified by their index
• this example:

module itm_grid_structured: constant GRID_STRUCT_NODES

Behind your back, the high-level interface creates
subgrids: lists of grid objects

ITM Training Session March 2012
14

Subgrid: edges

0.0 1.0 2.0 3.0 4.0 5.0
R

0
.0

1
.0

2
.0

Z

Module itm_grid_structured: constant GRID_STRUCT_EDGES

ITM Training Session March 2012
15

Subgrid: faces (2d cells)

0.0 1.0 2.0 3.0 4.0 5.0
R

0
.0

1
.0

2
.0

Z

Module itm_grid_structured: constant GRID_STRUCT_FACES

ITM Training Session March 2012
16

Writing data
Fortran interface

CPO data field

Subgrid index

data array

grid data structure

subgrid index

Subgrids are central to reading and writing data

ITM Training Session March 2012
17

General grid description:
some details (optional)

ITM Training Session March 2012
18

Describing discretizations:
General approach

0.0 1.0 2.0 3.0 4.0 5.0
R

0
.0

1
.0

2
.0

Z

face (2d cell)

edge node

The general grid description identifies and
describes grid objects: nodes, edges, …

ITM Training Session March 2012
19

Describing discretizations:
Space decomposition

Space 1

S
p

ac
e

2

0.0 1.0 2.0 3.0 4.0 5.0
R

0
.0

1
.0

2
.0

Z

1

2

3

4

5

1

2

3

4

1 2 3 4 5 6

1 2 3 4 5

Node index
Edge index

If possible, decompose the discretization
into spaces: independent discretizations
of individual coordinate directions

Here: two one-dimensional spaces
separately discretizing the R and Z direction

edge, node: space objects

ITM Training Session March 2012
20

Storing subobject information

Node
positions

n-dimensional space objects (n>0):
assembled from (n-1)d space objects

0d space objects: nodes

Boundaries of objects
Connectivity

These fields
store space object
indices

0.0 1.0 2.0 3.0 4.0 5.0
R

1 2 3 4 5 6

1 2 3 4 5

ITM Training Session March 2012
21

Describing discretizations:
Space combination/multiplication

Space 1

S
p

ac
e

2

Node index
Edge index

0.0 1.0 2.0 3.0 4.0 5.0
R

0
.0

1
.0

2
.0

Z

1

2

3

4

5

1

2

3

4

1 2 3 4 5 6

1 2 3 4 5

2d grid objects
(faces): 1d + 1d
space objects

1d grid objects (edges):
1d + 0d space objects

0d grid objects (nodes):
0d + 0d space objects

The full grid is obtained by forming all
possible combinations of space objects

ITM Training Session March 2012
22

((c1, c2,...,cn) (i1,i2,...,in))

Object class:
cj = subobject dim. in space j

Object index:
ij = subobject index in space j

Object Descriptor:
S

p
ac

e
2

((1,1) (4,2))

((1,0) (2,4)) ((0,1) (5,4))((0,0) (3,3))

1

2

3

4

5

1

2

3

4

1 2 3 4 5 6

1 2 3 4 5

ITM Training Session March 2012
23

Global object order

 The space objects have an explicit (local) order in their respective
space (simply the order in which they are defined)

 For the implicitly defined grid objects, a global order is imposed
 by adopting a simple counting convention (think linear address
 computation for multidimensional Fortran arrays):

Grid objects of a common object class are counted
by varying the leftmost index of the index tuple first.

This imposes an ordering of grid objects of a common class.
Every grid object can therefore be uniquely identified by:

Its object descriptor:
((c1, c2,...,cn) (i1,i2,...,in))

Its object class and
global index ig:
((c1, c2,...,cn) ig)

or

ITM Training Session March 2012
24

Storing data on grids:
subgrids

data is stored on a subgrid
subgrid = list of grid objects

the data is then stored
 simply as a vector, one entry
 per object in the subgrid

Subgrid index

Actual data:
one entry per subgrid object,
in the order defined in the subgrid

(vector, matrix: for complex
data representations)

ITM Training Session March 2012
25

Subgrid definition

 A subgrid is a selection of a subset
 of grid objects (of common dimension)

 There can be an arbitrary number of subgrids
(which are part of the grid description).
A specific subgrid is identified by its index.

 A subgrid is a list of object lists. Each object list can be either
 explicit: an explicit list of object descriptors
 implicit:an implicit list of object descriptors, selecting a

range or an entire class of objects

Object class tuple

Object index list
(for explicit list)

Object index set
(for implicit list)

ITM Training Session March 2012
26

Subgrids:
Implicit object list notation

((c1, c2,...,cn) (s1,s2,...,sn))Object List Descriptor:

Object class: cj = subobject dim. in space j
(same as in object descriptor)

Object index set: specifies multiple indices
sj = [i1, i2, …, iN] → explicit list of indices
sj = (i1,i2) → range of indices from i1 to i2
sj = UNDEFINED → all possible indices

Why is this important? Space splitting and implicitly defined
object order allow efficient handling of datasets on very large

(5d, 6d,...) structured grids.

Object order: implicit object lists inherit the object
order intrinsic to the underlying grid definition

ITM Training Session March 2012
27

Subgrids
Example: SOLPS-B2, single null

Core boundary faces

Outer midplane nodes

All 2d cells

ITM Training Session March 2012
28

Grid Service Library

• The Grid Service Library (GSL) provides functions to
simplify working with the General Grid Description data
structures (read/write grids and data)

• Current approach:
– Provide dedicated implementations for separate

languages, exploiting their strengths (like UAL)
– Some basic functionality present in all implementations,

consistency ensured by unit test framework
– Advanced functionality will diverge depending on typical

use cases for the different languages

• Current languages:
– Fortran 90: procedural, typical for codes
– Python: object oriented, typical for

post-processing tools/glue scripts

Can serve as
starting point
for other
implementations

ITM Training Session March 2012
29

Getting the service library

• GForge: maintained in itmggd project
• Getting a local copy:

svn co http://gforge.efda-itm.eu/svn/itmggd

cd grid

source setup.csh

testgrid setup

testgrid all

…Test all implementations: OK

• Public copy currently provided at ~klingshi/bin/itm-grid
(will move to a better place in the future)

• Your environment has to be set up for 4.09a
• Instructions at

https://www.efda-itm.eu/ITM/html/imp3_grid.html

Sets up F90&Python environment

Writes some example grids to database

Runs integration unit tests for all languages

http://gforge.efda-itm.eu/svn/itmggd
https://www.efda-itm.eu/ITM/html/imp3_grid.html

ITM Training Session March 2012
30

Grid Service Library:
Directory layout

•grid/
• f90/

• src/
• service/ Fortran service library modules
• examples/ Example programs
• test/ Unit tests

• python/
• itm/

• grid/ service library classes
• visit/ ualconnector/Visit integration
• test/ Unit tests

Documentation:
• General: IMP3 section of documentation website
• Documentation partially generated from source (Doxygen/Sphinx)
make doc; make doc_release
 https://www.efda-itm.eu/ITM/doxygen/imp3/grid_service_library/

https://www.efda-itm.eu/ITM/doxygen/imp3/grid_service_library/

ITM Training Session March 2012
31

Grid Service Library:
Fortran 90

Structured in modules. Some more interesting ones:
• itm_grid_access: accessing basic grid properties
• itm_grid_object: handling grid objects
• itm_grid_subgrid: handling subgrids
• itm_grid_structured: high-level interface for structured grids
• itm_grid_simplex: high-level interface for simplex grids (triangles…)

Subroutines & functions acting on on standard data types:

ITM Training Session March 2012
32

Hands-On:
Fortran Grid Service Library

Please go to the documentation
website → IMP3 →

IMP3 General Grid Description and
Grid Service Library - Tutorial

ITM Training Session March 2012
33

VisIt integration

• The general grid description enables general operations
with grids and data

• Example: general visualization tools for complex
discretizations and data sets

• LLNL VisIt (https://wci.llnl.gov/codes/visit/)

– Coupling to VisIt at the moment done with helper program
“ualconnector”

– In the future this will be simpler: you will be able to access
the plots through the normal methods (itmvisit, VisIt kepler
actor)

https://wci.llnl.gov/codes/visit/
https://wci.llnl.gov/codes/visit/
https://wci.llnl.gov/codes/visit/

ITM Training Session March 2012
34

ualconnector:
Basic usage

~klingshi/bin/itm-grid/ualconnector
 -s 17151,898,100.0 -c edge
 -s 17151,899,100.0 -c edge
 -u coster -t aug -v 4.09a

Options:
-s run,shot,time
-c cpo-name
-u username
-t Tokamak name
-v data version

have to be specified in pairs

• this will automatically launch & connect a VisIt 2.3 instance
• your environment has to be set up for data version 4.09a
• currently only makes sense for the edge CPO

can specify multiple CPOs

ITM Training Session March 2012
35

VisIt GUI

ITM Training Session March 2012
36

Hands-On:
General Grid Description –
Visualization with VisIt

ITM Training Session March 2012Conference name, data and Presenter
37

Application: core-edge coupling

Te (eV)

ETS

SOLPS 5.0

ITM Training Session March 2012
38

Some advanced features

ITM Training Session March 2012
39

Advanced features:
alternate geometries

Alternate geometries:
Explicitly include node
positions in alternate
coordinate systems

ITM Training Session March 2012
40

More features

• Additional object properties
– measures: length, area, volume …

– metric information: jacobian, metric tensor

– Identification of x-point nodes

• Periodicity
– either directly through object connectivity

– or indirectly through node aliasing

…we are quickly moving into area of experimental
features – much of this still
has to be tested in real applications ….

ITM Training Session March 2012
41

Experimental features:
non-standard representations

“Standard” geometry & data representation:
• Grid geometry directly given by node positions

and object boundaries
• Data fields: one constant value per grid object

(node value, area/volume average)

Non-standard representations:
• Flag in space data

structure indicates
alternate interpretation
of space definition

• The rest is up to you

ITM Training Session March 2012
42

Example: Fourier representation,
space data structure

= GEO_TYPE_FOURIER
= GEO_TYPE_ID_FOURIER(unused)

Holds mode numbers &
node positions for DFT

=(COORDTYPE_...)

•The space data structure holds information required for an
unambiguous inversion of the DFT
•Geometry data with additional degrees of freedom
also possible for implicitly defined grid objects

ITM Training Session March 2012
43

Example: Fourier representation,
data field structure

matrix(i,:,1) = real
matrix(i,:,2) = imaginary

components of DFT for
object with index i in subgrid

To spare us pain, the DFT definition of FFTW is used.
…but of course you can just as well propose your own!

ITM Training Session March 2012
44

Experimental features:
vector data type

•A complexgrid_vector is a vector of complexgrid_scalars
•The components can possibly be aligned to something:

• another vector quantity
• a set of base vectors, defined as part of the grid

•This is work in progress, application driven

ITM Training Session March 2012
45

Python

ITM Training Session March 2012
46

Grid Service Library:
Python

Basic design:
• classes wrapping data structures, which implement methods acting

on them (could include functionality in the UAL objects, but this would lead to lots of
complications)

• Python Inspection capabilities allow dynamic analysis of CPO
structure and contents (without prior knowledge)

Main classes (class name:wrapped data structure)
•itm.grid.cpo_tools.Cpo: general CPO wrapper
•itm.grid.base.Grid: complexgrid
•itm.grid.base.SubGrid: complexgrid_subgrid
•Itm.grid.data.ScalarData: complexgrid_scalar

…objects typically created through the itm.grid.cpo_tools.Cpo
CPO wrapper object

ITM Training Session March 2012
47

Reading grids:
Python interface

• High-level handling of CPOs

• Subgrids

Create wrapper object for CPO

Get grid object

Subgrid objects act as
sequences of
itm.grid.base.Object

ITM Training Session March 2012
48

Reading grids:
Python interface (ctd.)

• Plots via matplotlib

Subgrid lookup

ITM Training Session March 2012
49

Reading data:
Python interface

Find used data fields in CPOs
& return them as
itm.grid.data.ScalarData

Retrieve data

Automatic lookup of
data for specific objects

Find used data arrays

ITM Training Session March 2012Conference name, data and Presenter
50

How to use it?
1. CPO design

Add standard
grid data
structure in
an appropriate
place

Use standard
data structures
for CPO fields

… actually
makes CPO
design simpler

ITM Training Session March 2012Conference name, data and Presenter
51

How to use it?
2. Grid & data I/O

Grid Service
Library:

• high-level
interface for
standard
discretizations

• low-level interface
helps with
assembling and
reading complex
discretizations

ITM Training Session March 2012Conference name, data and Presenter
52

How to use it?
3. General tools

UAL  Python
Grid Service
Library 
UALConnector
 VisIt

