
The Universal Access Layer User Guide 
G. Manduchi, F.Imbeaux, M. Haefele, Y. Buravand, Y. Frauel, A. Galonska 

 
V11, December 2010 

 
1.  Introduction 
 In the framework of the Integrated Tokamak Modelling (ITM) task, the Universal Access Layer 
(UAL) provides the capability of storing/retrieving data involved in simulation. The underlying data 
structure is hierarchical, thus allowing groups of related data items to be associated in subtrees of 
the main data tree. The granularity in data access is given by the definition of a set of Consistent 
Physical Objects (CPOs). Every CPO is represented by a subtree in the underlying data hierarchy. 
CPOs represent the basic data set which can be read/written. In other words, it is not possible to 
read/write data items associated with a given CPO in insulation, it is always necessary to access the 
whole set of data stored in the subtree associated with the CPO.  
 
It is worth noting that physics programs do not need to access the UAL library when they are run 
under the control of the KEPLER simulation framework. In this case, in fact, data is passed as 
argument to the physics programs, which in turn return computed results. Nevertheless, the 
granularity introduced by CPOs is retained, that is physics programs will receive and return whole 
CPOs, not parts of them. 
 
Before using the UAL, a private database must be created and some environment variables must be 
tuned. It is strongly recommended to read first the basic instructions for manipulating ITM 
databases, see the following link on the ITM portal: 
https://portal.efda-
itm.eu/portal/authsec/portal/itm/ISIP/content?action=2&uri=/isip/database/Database_UG.htm  
 
 
The rest of this document refers to the usage of the UAL outside the KEPLER framework and is 
organized as follows: 
 
- General concepts introduces the architecture of the UAL and described those aspects which are 
common to all the binding languages.  
 
- It is followed by the description of the language-specific interfaces (so-called “high level” UAL), 
which are available in the following languages: 
 - Fortran; 
 - C++; 
 - Python; 
 - Java. 
 - Matlab 
 
- Low level interface description is intended for developer of new language bindings or software 
tools, and describes the C interface to the common, low-level data access routines. 
 
 
   



2. General  Concepts 
 
2.1 XML definition  
The UAL provides an interface to data handleld in ITM simulation in a Multilanguage framework. 
For this reason, the definition of the structures forming the CPOs involved in simulation is 
expressed using language-independent representation, that is XML Schema Description.  
XML Schema description is a World Wide Web Consortium (W3C) standard and is designed to 
describe a set of rules to which a class of XML descriptions has to adhere. In this context, the XML 
Schema description specifies the rules describing the structure and the allowed data types of the 
ITM database. Observe that, despite the fact that XML Schemas have been designed to specify the 
structure of XML descriptions, the ITM database will very likely not be defined as an XML file. 
However users are not concerned on the actual implementation of the database, rather they need to 
know how data are logically organized, and the XML Schema description provides an unambiguous 
way of describing the logical data organization. The current definition of the database structure, i.e. 
which CPOs are defined and their structure is available in the ITM Web page. 
 
In order to store/retrieve CPOs, it is necessary do define for each CPO the corresponding structure 
for the given programming language. Although the XML Schema description  is not related to any 
programming language, it is possible to build automated translation tools which produce the 
language-specific CPO structure definition, as well as the Application Programming Interface (API) 
implementation in each language, starting from the XML Schema Description (XSD). The 
translation tools are based on the XSLT specification, a W3C standard designed to translate XML 
documents.  The result of the translation is the language-specific interface which will be used in 
user programs.  
 
2.2 Time-dependent and Time-independent CPO fields 
In general a CPO can contain both time-dependent and time-independent information. Typically, 
information related to the tokamak hardware will not be time-dependent, while the value of plasma 
physical quantities will likely be time dependent. Therefore the fields of a CPO can be either time-
dependent or time-independent. The CPO itself will be time-independent if it contains only time-
independent fields. It will be time-dependent otherwise. Only few CPOs in the ITM database will 
be time-independent (e.g. topinfo, summary, vessel), while the others will describe physical 
phenomena which vary over time. 
Time-dependent CPOs are treated as arrays of the elementary CPO structure, i.e. in Fortran : 
equilibrium(:) is a pointer and equilibrium(i) is an equilibrium structure corresponding to time index 
i. Since many physics code manipulate only one time slice at a time, special UAL functions exist to 
extract a single time slice of the CPO : these are the GET_SLICE and PUT_SLICE functions.   
 
2.3 Common operations (very important, read carefully) 
ITM databases borrow the philosophy of the Pulse Files in Nuclear Fusion experiment. As pulse 
files typically contain all the information which is relevant to a plasma discharge, an ITM database 
will contain all the information which is related to the execution of a given simulation. A database 
model defines the hierarchical structure of the ITM simulation databases. The create() operation 
will create a new empty database taking the internal organization (i.e. the CPO structures) from the 
ITM database model. Two integer numbers define the newly created ITM simulation database: the 
Shot and the Run numbers. The Shot number is intended to refer to the actual shot number of the 
experiment on which the simulation is based. The Run number is an additional index to list all 
simulations referring to a given Shot number. Internally to the UAL, these two numbers are 
combined to form a Generalised Pulse Number, i.e. an extension of the usual shot number in 
Nuclear Fusion experiments. It means that the UAL functions create and open use these two 
numbers as input. Nevertheless, from the user point of view, a simulation is defined by additional 



information such as the Machine name (name of the experiment it refers to) and the User name 
(public or private user ITM database). These two parameters define a folder in the ITM Gateway in 
which all Shot and Run numbers for the given (Machine, User) are stored. To run the UAL 
properly, environment variables must have been set to the folder corresponding to Machine and 
User. This operation is done outside the UAL, which manages only the Shot and Run numbers 
inside a given (Machine, User) folder. A relational database and additional libraries will be used to 
set the environment variables properly prior calling the UAL. This is outside the scope of this 
document.  
 
Besides creating new (empty) ITM simulation databases, it is also possible to open an existing 
simulation database, using the open() operation, again specifying the Shot and Run numbers.  
 
The get() and put() functions are used to read and write a whole CPO. This is straightforward when 
the CPO does not depend on time. Conversely, when the CPO is time-dependent, all time slices are 
read (resp. written) to (resp.from) an array of elementary CPO structures. These CPO contain a time 
field, located at their root (i.e. for Fortran, cpo%time), which contains the time value to which all 
time dependent fields of the CPO refer. During a get() operation, time-independent fields of the 
time-dependent CPO are filled for every time value : cpo(i)%my_field is filled for all i values with 
the same time-independent value. It is worth noting that time-independent CPO fields are internally 
stored in a single instance in order to save space in the simulation database. The get() operation 
does all necessary memory allocations for all CPO fields and for the CPO array itself. 
During a put() operation, time-independent fields of the time-dependent CPO are written using the 
value of the first time index of the CPO : cpo(1)%my_field is used as the time-independent value of 
this field.  
Note that a put() operation erases any values of CPO fields that could have been written before. 
 
The getSlice() and putSlice() functions are used to read and write a single time slice of a CPO. 
In the getSlice() case, it is necessary to provide also the value of the time wanted. If the passed time 
value does not fit exactly the time stored in any CPO sample, the returned sample is chosen based 
on the passed interpolation mode. The following interpolation modes are supported in the UAL: 
 

- 1 : CLOSEST_SAMPLE: the returned CPO is the stored CPO whose time is closest to the 
passed time; 

- 2 : PREVIOUS_SAMPLE: the CPO whose time is just before the passed time is returned. 
- 3 : LINEAR INTERPOLATION:  the values of the time-dependent return CPO fields are 

computed according to a linear interpolation between the corresponding values of the 
CPOs just before and after the passed time; 

 
If the passed time lies outside the time range of the stored CPOs, the first (last) CPO stored sample 
in the range is returned. 
 
Using operation putSlice() allows appending a new time slice to an already stored time-dependent 
CPO. Note that the putSlice() function affects only the time-dependent fields of the CPO. 
Therefore, there are two possibilities : 

- at least one time slice of the CPO is previously written by a put() operation. Then the 
time-independent fields are properly written and putSlice() can safely be used to append 
time slices to this CPO. 

- The first time slice of the CPO is written using a putSlice() operation. In this case, the 
CPO time-independent field must be properly filled by using the putNonTimed() 
instruction. This one will write only the time-independent fields of the CPO and must be 
followed by a putSlice() operation. 



 
It is also possible to replace the last CPO time slice stored in the simulation database, via operation 
replaceLastSlice(). It is instead not possible to replace a CPO time slice other than the last one, 
without overwriting the whole CPO array. 
 
 
2.4 CPO location within the dataset 
A dataset of the ITM database is defined by the four elements (User, Machine, Shot, Run). A 
dataset consists in an instance of the whole ITM data structure, i.e. a collection of CPOs. For each 
CPO name (e.g. topinfo, equilibrium, …), a certain number of occurrences of this CPO can exist 
within a given dataset. A maximum number of occurrences is defined for each CPO in the XML 
Schema description. Note that CPO occurrences are completely independent of the others : although 
they have the same structure, they contain a priori different data and may have different time bases. 
 
UAL functions make use of the XPath standard to specify CPO paths and field paths inside a CPO 
(path names in XPath are quite similar to file names in Unix file system). XPath is a W3C standard 
designed to unambiguously specify items within a XML (hierarchical) description. All CPOs are 
defined at the root level, i.e. their name in the database hierarchy is simply their name. For example, 
the equilibrium CPO is defined by the simple path name equilibrium. Although CPO fields are 
internally accessed using XPath syntax, users are not concerned with this as they always read or 
write whole CPOs. Once read, the CPO fields are contained in the (language specific) structure in 
memory. 
 
Cpopath : within a dataset, a CPO is defined by the two elements (name, occurrence). The path of a 
CPO must be specified to the UAL as : <cpo name>/<occurrence number>. For example, 
equilibrium/1 represents the path name of the first occurrence of the equilibrium CPO in the dataset. 
Note that the cpoPathName “equilibrium” is allowed and refers to a sort of 0th occurrence of the 
CPO, though it should not be used by ITM programs under the KEPLER framework. 
 
Fieldpath :  in addition to Cpopath, path of the CPO fields must be specified to functions of the low 
level UAL (which operate on CPO fields). The field path uses also the Xpath syntax and is given 
relative to the CPO root. For example, the path of the q profile under a CPO equilibrium should be 
given as profiles_1d/q. 
 
2.5 Empty fields 
The ITM data structure aims at a fairly detailed description of the physics objects. Therefore it will 
be common that many fields are left empty by the program. UAL get() and put() routines will 
manage this transparently.  
 
2.6 Memory Mapped Data Access 
When running extensive simulation programs, the time required for I/O may worsen overall 
performance, especially when a large number of time values is managed and therefore a large 
number of CPO samples is appended one by one in the simulation database during execution. In 
order to improve (often dramatically) performance, the UAL allows to temporarily map CPO 
samples in memory, flushing them in the database under the control of the program. 
When memory caching is enabled, read operations will access the simulation database once, 
maintaining afterwards the values in memory. Similarly, put() and putSlice() operations will store 
data in memory, until if is written back in the simulation database via a flush() operation.  
Currently, the UAL allows globally enabling memory caching. It is then user’s responsibility to 
flush CPO data from memory to disk. If data are not flushed, they are lost once the simulation 
database is closed. 



 
2.7 UAL architecture 
In order to cope with multiple languages and maintaining at the same time a unique structure 
definition, the UAL architecture defines two layers. The top layer provides the external Application 
Programming Interface (API), and its code is automatically produced from the XML description of 
the ITM database structure. For each supported programming language, a high level layer is 
generated in the target language. The following sections will describe the language specific API, 
and they provide all the required information for simulation program developers. 
The lower layer is implemented in C and provides unstructured data access to the underlying 
database. It defines an API which is used by all the high level layer implementations. Knowledge of 
this API (presented in a later section) is not necessary to end users, and is only required to the 
developers of new language specific high level implementations of the UAL as well as the 
developers of support tools for ITM management. 
The definition of a low level API as the unique interface to low level I/O allows also the 
replacement of the underlying database implementation without affecting the high level layers. 
The low level library provides support for MDSplus (the default configuration) and HDF5. The 
selection of the database technology is done in the open() or create() operations, and it is possible to 
handle at the same time MDSplus pulse files and HDF5 files. Knowledge of neither MDSplus nor 
HDF5 is required to operate the UAL.   
    
 
 



3. High Level API 
 
This section describes the language specific interface of the UAL for end users. Although all the 
implementations share the same concepts, they differ from each other, as the consequence of the 
differences among the programming languages. 
 
3.1 FORTRAN Interface 
For every CPO structure definition, a data type is defined in the Fortran interface. In order to make 
the compiler aware of the CPO data types and be able to use the Fortran UAL, it is necessary to 
include the following two lines in every Fortran program : 
 
 
use euITM_schemas       ! ITM data types 
use euITM_routines      ! Fortran UAL 
 
 
------------------------------------------------------------------------------------------------------------------------ 
New ITM simulation databases are created via routine 
 
euitm_create(treename,shot,run,refshot,refrun,idx) 
 
where: 
  - treename is the name of the ITM database, i.e. ‘euitm’ (mandatory); 
 - shot, run are the shot and run number of the database being created; 
 - refshot, refrun are the shot and run number of the reference database (currently not used) 
 - idx is the returned identifier to be used in the subsequent data access operation. 
 
The new simulation can also be created in a database different from the default one via routine 
 
euitm_create_env(treename,shot,run,refshot,refrun,idx,user, 
tokamak,dataversion) 
 
------------------------------------------------------------------------------------------------------------------------ 
Existing simulation databases are open via routine  
 
euitm_open(treename,shot,run,idx) 
 
where: 
 - treename is the name of the ITM database, i.e. ‘euitm’ (mandatory); 
 - shot, run are the shot and run number of the database to open; 
 - idx is the returned integer identifier to be used in the subsequent data access operation. 
 
Multiple datasets of the ITM database can be open at the same time. The returned idx parameter is 
used to re-direct I/O accordingly.  
 
The new simulation can also be opened from a database different from the default one via routine 
 
euitm_open_env(treename,shot,run,idx,user,tokamak,dataversion) 
 
------------------------------------------------------------------------------------------------------------------------ 
An open database is closed via routine: 



 
euitm_close(idx) 
 
where idx is the parameter returned by the open or create routine.  
 
------------------------------------------------------------------------------------------------------------------------ 
CPO declaration : 
In order to read a CPO in a single get operation, it is necessary to declare first a variable whose type 
corresponds to the selected CPO structure. By definition the names of the CPO types in Fortran is 
type_<CPO name>. For Time-independent CPOs, the declaration is straightforward. For example, 
the following declaration defines a variable cpotest to be of type type_vessel, where vessel 
is a Time-independent CPO.: 
 
type (type_vessel) :: cpotest 
For Time-dependent CPOs, get() operation may return an array of CPO samples. It is therefore 
necessary to declare a variable as a pointer  (initialized to null) to the corresponding structure. In the 
following example, variable cpotest1 is declared a pointer to type type_equilibrium, and 
will contain the returned array of equilibrium CPO samples:   
 
type (type_equilibrium),pointer :: cpotest1(:) => null() 
 
------------------------------------------------------------------------------------------------------------------------ 
the following routine will get either a time-independent CPO or an array of time dependent CPO 
samples (multiple time slices) : 
 
euitm_get(idx,"Cpopath",retcpo) 
 
where: 

- idx is the identifier returned by open or create; 
- Cpopath is the (name,occurrence) of the CPO (e.g. “equilibrium” or “equilibrium/1”, 
see 2.4) 
- retcpo is the returned CPO or CPO array 

 
After euitm_get has been successfully executed, the array of CPO samples is contained in the 
returned retcpo variable. The number of returned samples (time slices) can be inspected by 
calling function size(retcpo), and the CPO fields are specified by the field name (the same as  
in the XML definition of the CPO structure). For example, field datainfo/dataprovider of 
the first time slice of a returned equilibrium CPO array (cpotest) is identified by:  
 
cpotest(1)%datainfo%dataprovider 
 
 
------------------------------------------------------------------------------------------------------------------------ 
the following routine will return a single time slice of a time-dependent CPO. If applied (by 
mistake) to a time-independent CPO, it will simply call the euitm_get routine.  
 
euitm_get_slice(idx,"Cpopath",retcpo,twant,interpol) 
where: 

- idx is the identifier returned by open or create; 
- Cpopath is the (name,occurrence) of the CPO (e.g. “equilibrium” or “equilibrium/1”, 
see 2.4) 



- retcpo is the returned CPO time slice. It is NOT an array.  
- twant is the time value wanted by the user 
- interpol is the interpolation mode (1,2 or 3) as defined in section 2.3 

 
 
------------------------------------------------------------------------------------------------------------------------ 
For a proper deallocation of the returned CPO structures the following routine should be used: 
 
euitm_deallocate(cpovar)  
 
where 
  -cpovar  is the variable used to receive CPO samples in euitm_get() 
 
 
------------------------------------------------------------------------------------------------------------------------ 
In order to copy a filled CPO variable to an empty CPO variable of the same type. This subroutine 
allows a clean allocation of all fields of the target, which in Fortran is not guaranteed at all by a 
mere instruction “=”. All non-empty fields of the CPO variable are copied to the target.  
 
euitm_copy(cpovarin,cpovarout)  
 
where 
  -cpovarin  is the filled CPO variable to be copied 
 -cpovarout  is the target CPO variable 
 
NB : for time-dependent CPOs, the output CPO variable is allocated by the euitm_copy function 
with the same size as cpovarin (i.e. same number of time slices). All time slices are copied to 
cpovarout.  
 
------------------------------------------------------------------------------------------------------------------------ 
CPOs already filled by the physics program can be written in the simulation database via routine: 
 
euitm_put(idx,"Cpopath",cpovar) 
 
where: 
 

- idx is the identifier returned by either create or open; 
- Cpopath is the (name,occurrence) of the CPO (e.g. “equilibrium” or “equilibrium/1”, 
see 2.4) 
- cpovar is the variable holding the CPO. If the CPO is defined as time-dependent in the 
ITM data structure, cpovar must be an array of CPO samples. 

 
Note that this routine will in first place erase any values that could have been written to this CPO 
before.  
 
 
------------------------------------------------------------------------------------------------------------------------ 
The following instruction will append a time slice to a CPO already put in the database. It exists 
only for time-dependent CPOs. 
 
euitm_put_slice(idx,"Cpopath",cpovar) 



 
where: 

- idx is the identifier returned by either create or open; 
- Cpopath is the (name,occurrence) of the CPO to append (e.g. “equilibrium” or 
“equilibrium/1”, see 2.4) 
- cpovar is the variable holding the CPO time slice. It is NOT an array. Note that the time 
value of the slice is directly read in cpovar%time.  

 
 
------------------------------------------------------------------------------------------------------------------------ 
The following instruction will write only the time-independent fields of a CPO. It is useful to 
initialise a sequence of put_slice routines in a workflow (see 2.3). If applied (by mistake) to time-
independent CPOs, it will call the euitm_put() instruction 
 
euitm_put_non_timed(idx,"Cpopath",cpovar) 
 
where: 

- idx is the identifier returned by either create or open; 
- Cpopath is the (name,occurrence) of the CPO (e.g. “equilibrium” or “equilibrium/1”, 
see 2.4) 
- cpovar is the variable holding the CPO. If the CPO is defined as time-dependent in the 
ITM data structure, cpovar must be an array of CPO samples. 

 
Note that this routine will in first place erase any values that could have been written to this CPO 
before.  
 
------------------------------------------------------------------------------------------------------------------------ 
The following instruction will delete entirely a CPO from the dataset. It is called by the euitm_put 
and euitm_put_non_timed routines systematically in order to clean completely the CPO prior any 
put. 
 
euitm_delete(idx,"Cpopath") 
 
where: 

- idx is the identifier returned by either create or open; 
- Cpopath is the (name,occurrence) of the CPO to delete (e.g. “equilibrium” or 
“equilibrium/1”, see 2.4) 

 
------------------------------------------------------------------------------------------------------------------------ 
It is possible to obtain a list of times contained in a given CPO, using the following instruction: 
 
euitm_get_times(idx,"Cpopath",times) 
 
where: 

- idx is the identifier returned by either create or open; 
- Cpopath is the (name,occurrence) of the CPO 
- times is an output vector that returns the values of the times 

 
------------------------------------------------------------------------------------------------------------------------ 
The following routine enables data caching in memory: 
 



euitm_enable_mem_cache() 
 
Conversely, the following routine disables data caching: 
 
euitm_disable_mem_cache() 
 
When data caching is enabled, data in memory for a given CPO (or CPO array) is flushed on disk 
by calling the following routine: 
 
euitm_flush(idx,”Cpopath”,cpovar) 
 
where: 

- idx is the identifier returned by either create or open; 
- Cpopath is the path name of the CPO to be flushed in the simulation database; 
- cpovar is the variable holding the CPO. 

 
All the CPOs can be flushed at once with: 
 
euitm_flush_all(idx) 
 
where idx is the identifier returned by either create or open. 
 
On the other hand, if a CPO is not to be saved to disk, it can be discarded with: 
 
euitm_discard(idx,”Cpopath”,cpovar) 
 
where: 

- idx is the identifier returned by either create or open; 
- Cpopath is the path name of the CPO to be discarded; 
- cpovar is the variable holding the CPO. 

 
------------------------------------------------------------------------------------------------------------------------ 
 
Functions that are not yet implemented in the Fortran UAL :  
 
replaceLastSlice() 
 
 
Error handling in Fortran UAL 
 
 
Allocating CPOs and fields 
Note that all the CPO fields which are not a scalar value (i.e. strings and arrays) must be allocated 
prior to be used. If the CPO is returned by euitm_get(), the allocation is done by the UAL.  
 
For example, the following instruction allocates an array of two time slices of a CPO, whose pointer 
is held in variable cpotest: 
 
allocate(cpotest(2)) 
 



The following lines allocate field profiles_1d/pprime, which will contain an array of three 
float values, for both the allocated CPO time slices. Note that a CPO field must be allocated with 
the same dimension for all time slices of the CPO.  
  
do i=1,2 
    allocate(cpotest(i)%profiles_1d%pprime(3) 
enddo 
 
Similarly, fields that are arrays of structures must be allocated before being used. In this case, 
however, the size of the subfields of this array of structure may vary with time. 
It is also mandatory to fill the “time” field of every time-dependent CPO samples prior to 
inserting it in the simulation database. 
 
Empty fields in Fortran : 
Empty fields in Fortran CPOs are managed as follows: 

- Empty integer fields are initialised as -999999999 
- Empty real fields are initialised as -9.D40 
- Empty pointers (strings and arrays) are initialised as « null ». During a program, there 

non-emptiness can be tested by the instruction « if (associated(varname) ) » 
 
Strings in Fortran : 
Strings (XML type : xs:string) and arrays of strings (XML type : vecstring_type) are declared in 
F90 as : character(len=132), dimension(:), pointer 
 
The proposed use is the following: 

 
For strings :  
The dimension of the F90 pointer must be allocated depending on the length of the string (i.e. 
more than 1 if the string length exceeds 132 characters). This allows to handle arbitrarily long 
strings. In the database, strings are stored as one arbitrarily long string. The F90 UAL does the 
concatenation of the F90 strings to the database format (or conversely the de-concatenation 
from the database to the F90). 
Most strings will likely be short enough to be allocated with pointer dimension 1. 
 
For vector of strings :  
The dimension of the F90 pointer represents directly the dimension of the vector of strings. 
Each string in the vector must be of maximum length 132. 
 
Note that, at the moment, no time-dependent strings nor vector of strings are allowed in the 
schemas.  

 
 
3.1.1 A FORTRAN example for reading an array of CPO samples  
 
program test 
 
! This program is for practicing the UAL GET command 
! euitm_get gets all time slices of a CPO, replacing any previous data for that 
CPO 
! it can be used both for time-dependent and time-independent CPOs 
 
use euITM_schemas 
use euITM_routines 



 
implicit none 
 
integer,parameter :: DP=kind(1.0D0) 
 
 
type (type_equilibrium),pointer :: cpotest(:) => null() 
! For time-independent CPOs :  
type (type_vessel) :: cpotest2 
 
real(DP) :: scalans 
character(len=132)::stringans,stringans2 
 
 
integer :: idx, shot, run, status 
integer :: numDims,dim1,dim2,dim3 
 
character(len=5)::treename 
shot =11 ! Your choice 
run = 1  ! Your choice 
treename = 'euitm'   ! Mandatory  
 
 write(*,*) 'Open shot in MDS !' 
 call euitm_open(treename,shot,run,idx) 
   
write(*,*) 'Reading the results :' 
call euitm_get(idx,"equilibrium",cpotest)   ! This does the memory allocation 
automatically 
write(*,*) 'This CPO has ',size(cpotest),' time slices'   ! check the number of 
time slices present in the CPO 
  
! Printout a few variables, just to show how it works 
write(*,*) 'datainfo%provider = ',cpotest(1)%datainfo%dataprovider 
write(*,*) 'codeparam%codename = ',cpotest(1)%codeparam%codename 
 
write(*,*) 'time at time slice 1 = ',cpotest(1)%time 
write(*,*) 'time at time slice 2 = ',cpotest(2)%time 
 
write(*,*) 'li = ',cpotest(:)%global_param%li 
 
write(*,*) 'Profiles_1d%pprime @ time slice 1 = ',cpotest(1)%Profiles_1d%pprime 
write(*,*) 'Profiles_1d%pprime @ time slice 2 = ',cpotest(2)%Profiles_1d%pprime 
 
write(*,*) 'Profiles_2d%psi_grid @ time slice 1 = 
',cpotest(1)%Profiles_2d%psi_grid 
write(*,*) 'Profiles_2d%psi_grid @ time slice 2 = 
',cpotest(2)%Profiles_2d%psi_grid 
 
call euitm_deallocate(cpotest) ! For a clean deallocation of the CPO variable 
end 
 



3.1.2 A FORTRAN example for writing an array of CPO samples  
 
program test 
 
! This program puts dummy data in the DB entry, just for practicing the UAL PUT 
command 
! euitm_put writes all time slices of a CPO, replacing any previous data for 
that CPO 
! it can be used both for time-dependent and time-independent CPOs 
 
use euITM_schemas 
use euITM_routines 
 
implicit none 
 
integer,parameter :: DP=kind(1.0D0) 
 
type (type_equilibrium),pointer :: cpotest(:) => null() ! Declaration of the 
empty CPO to be filled 
! This is a pointer because it is time dependent (several time slices allowed) 
and we want it to have several time slices 
! In the case of a time-independent CPO or a single time slice of a time 
dependent CPO, one should declare it as : 
! type (type_vessel) :: cpotest 
 
 
integer :: idx, shot, run, refshot, refrun, status, i 
 
character(len=5)::treename 
shot =11 
run = 1 
refshot = 10 
refrun =0 
treename = 'euitm' 
 
 write(*,*) 'Open shot in MDS !' 
 call euitm_open(treename,shot,run,idx) 
  
 ! Let's do a CPO with 2 time slices 
 allocate(cpotest(2)) 
 
! Filling part of the tree 
 
 allocate(cpotest(1)%datainfo%dataprovider(1))  ! Example for a string variable. 
Attention : all strings are allocatable !! 
 cpotest(1)%datainfo%dataprovider="FI"          ! NB : this data is NOT time-
dependent, though the CPO is time-dependent. The euitm_put instruction will use 
only its value as defined for the first time slice, i.e. in cpotest(1) 
  
 allocate(cpotest(1)%codeparam%codename(3))  ! Example for an array of strings 
(the length of each string of the array is limited to 132 characters) 
 cpotest(1)%codeparam%codename(1)="test_equilibrium_put.f90 : First line" 
 cpotest(1)%codeparam%codename(2)="test_equilibrium_put.f90 : Second line" 
 cpotest(1)%codeparam%codename(3)="test_equilibrium_put.f90 : Third line" 
 
   
 cpotest(1)%global_param%li = 1.0D0     ! Example of a time-dependent scalar 
variable 
 cpotest(2)%global_param%li = 2.0D0 
  
 ! Example of a time-dependent vector variable 
 do i=1,2 
    allocate(cpotest(i)%profiles_1d%pprime(3))    ! All time slices must have 
the same dimension !! 



 enddo    
 cpotest(1)%profiles_1d%pprime= (/ 3.2D0 , 4.2D0, 5.2D0 /) 
 cpotest(2)%profiles_1d%pprime= (/ 5.2D0 , 6.2D0, 7.2D0 /) 
  
 ! Example of a time-dependent matrix variable 
 do i=1,2 
    allocate(cpotest(i)%profiles_2d%psi_grid(4,3)) ! All time slices must have 
the same dimension !! 
 enddo  
 cpotest(1)%profiles_2d%psi_grid(1,:)= (/ 3.2D0 , 4.2D0, 5.2D0 /) 
 cpotest(1)%profiles_2d%psi_grid(2,:)=(/ 3.3D0 , 4.3D0, 5.3D0 /) 
 cpotest(1)%profiles_2d%psi_grid(3,:)=(/ 3.4D0 , 4.4D0, 5.4D0 /) 
 cpotest(1)%profiles_2d%psi_grid(4,:)=(/ 3.5D0 , 4.5D0, 5.5D0 /) 
 cpotest(2)%profiles_2d%psi_grid(:,:) = 
cpotest(1)%profiles_2d%psi_grid(:,:)+1.0D0  
  
 cpotest(1:2)%time= (/ 1.2D0 , 2.2D0/) ! IT IS MANDATORY TO DEFINE THE TIME 
VARIABLE IN A TIME-DEPENDENT CPO 
  
 write(*,*) 'Put full Equilibrium CPO' 
 call euitm_put(idx,"equilibrium",cpotest) 
   
 call euitm_deallocate(cpotest) 
   
end 
 
 
To be added : a couple of more examples for reading and writing CPO slices 
 
 
 
3.2 C++ Interface 
 
In C++  the UAL functionality is exported by a set of classes. All the required classes are defined in 
UALClasses.h, which has to be included in the program. 
 
All the UAL classes and methods are defined in namespace ItmNs. The UAL C++ interface uses 
the blitz package for handling arrays. Refer to http://www.oonumerics.org/blitz/ for the blitz related 
documentation. 
 
The main class for the UAL is ItmNs::Itm. This class has two constructors. The first one takes 
4 integer parameters: Shot, Run, RefShot, RefRun (the last two arguments are currently 
not used). The second form takes a single integer parameter Idx and is used to deal with an already 
open pulse file. 
 
The following methods are defined for class ItmNs::Itm: 
 

- void open() Open the simulation database; 
- void openEnv(user,tokamak,dataversion) Open a database that is 
different from the default one; 
- void create() Creates a new simulation database; 
- void createEnv(user,tokamak,dataversion) Creates a new simulation in 
a database that is different from the default one; 
- void close() Closes the simulation database; 
- int getIdx() Returns the database identifier; 
- int getShot() Returns the shot number; 



- int getRun() Returns the run number; 
- bool isConnected() Return true if a simulation database is currently open. 

 
The last method should be called in order to make sure that open() or create() were 
successful. 
 
Contrary to previous versions, method close() is no more called by the destructor of class 
ItmNs::Itm. A call to close() must therefore be explicitly made after each call to open() or 
create(). 
 
In addition, class ItmNs::Itm has the following method to retrieve the list of stored times: 
 
 int getTime("Cpopath",times) 
 
where: 

- Cpopath is the (name,occurrence) of the CPO 
- times is an output vector that returns the values of the times 

 
An object of class ItmNs::Itm contains a set of fields which correspond to the CPO types 
defined in the ITM simulation database. For time-independent CPOs, an inner class with the same 
name is defined, and a field of the ItmNs::Itm is declared, whose name is the name of the CPO 
type preceded by an underscore. For example, if itm is a variable of class ItmNs::Itm, 
itm._summary (of class ItmNs::Itm::summary)  contains all the fields of the summary 
CPO. CPO fields are then accessed as fields of the corresponding class. For example, the string 
field whose path in the XML definition is summary/datainfo/comment, is accessed in C++ 
as itm._summary.datainfo.comment and is represented by C++ string type. Scalar 
CPO fields are mapped to the corresponding C++ types: int for integer fields, float for float 
fields and double for double fields. Mono and multidimensional arrays are instead represented by 
blitz array objects, thus allowing a very flexible and efficient array management.  
 
For time-independent CPOs, the corresponding class defines the following methods: 
 

- int get() Read the time-independent CPO in the simulation database 
- int get(int inst) Read the time-independent CPO whose instance number is 
given  by argument inst (to be used if multiple CPO instances are used); 
- int put() Write the time-independent CPO in the simulation database. 
- int put(int inst) Write the time-independent CPO whose instance number is 
given  by argument inst (to be used if multiple CPO instances are used); 

 
 
For example, the summary CPO is read in the database in the following instruction (where itm is 
an instance of class ItmNs::Itm, for which method open() has been successfully called): 
itm._summary.get(); 
 
 
Upon successful completion the above methods return 0. If a different value is returned, an error 
occurred. Routine  
 
char *euitm_last_errmsg() 
 
will return a string description of the error which occurred last. 



 
For time-dependent CPOs, two inner classes and two fields in class ItmNs::Itm are defined. The 
first class has the same name of the CPO type, and the corresponding field has the same name, 
preceded by an underscore. The second class has name <CPO type>Array and the 
corresponding field has the class name preceded by an underscore. 
The first class (and field) is used for all those operation which involve a single CPO sample, that is 
getSlice() and putSlice(). The second class will instead andle all the operation which involve arrays 
of CPO samples, i.e. get() and put(). 
 
The methods defined in the first class are the following: 
 

- int getSlice(double inTime, char interpolMode) Read this CPO from 
the simulation database,  at the time corresponding to inTime, using the interpolation mode 
specified in interpolMode; 
- int getSlice(int inst, double inTime, char interpolMode) 
Same as before, but for the CPO instance specified by argument inst; 
- int putSlice() Append this CPO to the CPO array stored in the simulation 
database. Only time-dependent CPO fields will be written in the database, and the time field 
of this CPO will specify the time this CPO instance refers to; 
- int putSlice(int inst) Same as before, but for the CPO instance specified by 
argument inst; 
- int replaceLastSlice() Replace the last CPO in the CPO array stored in the 
simulation database; 
- int replaceLastSlice(int inst) Same as before, but for the CPO instance 
specified by argument inst; 
- int putNonTimed() Write in the database the time-independent fields of this CPO 
- int putNonTimed(int inst) Same as before, but for the CPO instance specified 
by argument inst; 
- void flushCache() Flush all data cached in memory for this CPO into the 
simulation database. 

 
The definition of two different methods for storing time-dependent and time-independent CPO 
fields allows improving performance. Time-independent CPO fields are in fact required to be stored 
only once in the database, while time-dependent fields need to be appended in the database as many 
times as the number of time samples computed in the simulation.  
 
The second class is instead used when arrays of CPO samples are handled by the program. i.e for 
get() and put() operation for time-dependent CPOs. The name of this class is the <CPO type>Array, 
and defines an unique field named array which is a blitz array of <CPO types> objects (i.e. an 
array of objects of the first class). The methods defined for this class are the following: 
 

- int get() Read the stored array of CPOs in the simulation database; 
- int get(int inst) Same as before, but for the CPO instance specified by 
argument inst; 
- int put() Write in the simulation database the array of CPO samples stored in the 
array field; 
- int put(int inst) Same as before, but for the CPO instance specified by 
argument inst; 

Once the array of CPO samples has been read from the simulation database, the fields of the ith 
CPO sample are accessed as the ith element of the field array. For example, assuming that itm is 



an instance of class ItmNs::Itm,  the number of pfsystems CPO samples read in the simulation 
database, i.e. after a successful execution of itm._pfsystemsArray.get(), is given by:    
 
itm._pfsystemsArray.array.extent(0) 
 
and the kth element of the CPO field (a double array) whose path name is pfsupplies/voltage/value 
of the ith CPO samples is given by: 
 
itm._pfsystemsArray.array(i).pfsupplies.voltage.value(k) 
 
 
Empty fields in C++ CPOs are managed as follows : 

- Empty integer fields are initialised as -999999999 
- Empty real fields are initialised as -9.D40 
- Empty pointers (strings and arrays) are initialised as 0.  It is responsibility of the 

programmer to test for the existence of arrays before using blitz accessor methods. 
 
------------------------------------------------------------------------------------------------------------------------ 
The following routine enables data caching in memory: 
 
euitm_enable_mem_cache() 
 
Conversely, the following routine disables data caching: 
 
euitm_disable_mem_cache() 
 
When data caching is enabled, data in memory for a given CPO (or CPO array) is flushed on disk 
by calling the following methods of the corresponding inner class: 
 
flushCache() 
flushCache(inst) for a different CPO instance 
 
On the other hand, if a CPO is not to be saved to disk, it can be discarded with the following 
method of the inner class: 
 
discardCache() 
discardCache(inst) for a different CPO instance 
 
All the CPOs can be flushed at once with the following method of the main class ItmNs::Itm: 
 
flushAll() 
 
 
 
3.2.1 A C++ example for reading a CPO slice 
 
//Definition of the class structures in file UALClasses.h 
#include "UALClasses.h" 
/*  
 This sample program reads the database filled by program put_cpo_slice_cxx. It takes a 
time argument 
from the command line, and uses this value to get a time slice in the array of stored 
pfsystems CPOs. 



Linear interpolation is [performed if the time lies beween stored times. It the time lies 
outsize the  
range of stored times, the upper or lower CPO slice is considered. 
*/ 
 
int main(int argc, char *argv[]) 
{ 
    float time; 
    if(argc != 2) 
    { 
        printf("Usage: get_cpo_clice_cxx <time>\n"); 
        exit(0); 
    } 
   sscanf(argv[1], "%f", &time); 
     
    //Here refShot and refRun arguments have no meaning 
    ItmNs::Itm itm(123,2,123,1); 
    itm.open(); //Open the database 
     
     
    //Get the  CPO slice corresponding to the passed time 
    //Defining linear interpolation. The other options are CLOSEST_SAMPLE  
    //and PREVIOUS_SAMPLE 
    itm._pfsystems.getSlice(time, INTERPOLATION); 
 
    //Dump the whole returned CPO 
      cout << "PFSYSTEMS at time " << time << "\n" << itm._pfsystems; 
 
    itm.close(); // Close the database 
} 
 
 
3.2.2 A C++ example for writing  a CPO slice 
//Definition of the class structures in file UALClasses.h 
#include "UALClasses.h" 
 
 
/* 
This programs append 20 pfsystems CPO slices for pfsystems CPO. The usage of this 
approach makes sense during a simulation in which subsequent 
time slices are computed and then appended in the database. */ 
 
int main(int argc, char *argv[]) 
{ 
    //Instantiate the Itm object for shot 123, run 2, using shot 123 and  
    //run 0 as reference shot (not used for now) 
        ItmNs::Itm itm(123,2,123,0); 
 
        //Create a new instance of database 
        itm.create();  
  
 
        //First fill fields which are not time-dependent. This is carried out 

  // by method putNonTimed() 
         
         
        //Fill a string field (datainfo.dataprovider) Strings are represented 
        //by std::string objects 
  
        itm._pfsystems.datainfo.dataprovider.assign("USER"); 
 
        //Allocate and fill with sample values field  
        //pfcoils.desc_pfcoils.res (1D float array) 
 
        itm._pfsystems.pfcoils.desc_pfcoils.res.resize(4); 
        for(int i = 0; i < 4; i++) 
            itm._pfsystems.pfcoils.desc_pfcoils.res(i) = i; 
 
 
        //Allocate and fill field pfcoils.desc_pfcoils.name (1D String array) 



 
        itm._pfsystems.pfcoils.desc_pfcoils.name.resize(2); 
        itm._pfsystems.pfcoils.desc_pfcoils.name(0) = "SAMPLE 1"; 
        itm._pfsystems.pfcoils.desc_pfcoils.name(1) = "SAMPLE 2"; 
         
        //Allocate and fill field 
        //pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r 

  // (3D float array). 
 

itm._pfsystems.pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r.resize(2,3,4); 
        for(int i=0 ; i < 2; i++) 
            for(int j = 0; j < 3; j++) 
                for(int h = 0; h < 4; h++) 
                    
itm._pfsystems.pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r(i,j,h) = 
100*i+10*j+h; 
 
        //Save non time dependent fields 
        itm._pfsystems.putNonTimed(); 
         
        //Save the time evolution of time dependent fields (only pfsupplies.voltage.value 
        // is fileld in this example) 
         
        //Resize first (and once) the array. Recall that pfsupplies.voltage.value is a 
        // 1D time dependent array 
        itm._pfsystems.pfsupplies.voltage.value.resize(4); 
        for(int k = 0; k < 200; k++) 
        { 
            for(int i = 0; i < 4; i++) 
                itm._pfsystems.pfsupplies.voltage.value(i) = 111*(i+1)+1000*k; 
             
            //Do not forget time!! 
            itm._pfsystems.time = k; 
             
            //Append this slice in the database 
            itm._pfsystems.putSlice(); 
        } 
 
        itm.close(); // Close the database 
} 
         
 
 
 
 
 
 
 
3.2.3 A C++ example for reading a whole CPO array 
 
//Definition of the class structures in file UALClasses.h 
#include "UALClasses.h" 
 
/* 
This sample program will open an eisting pulse file (shot 123, run1) and will  
read the stored (array of) equilibirium CPOs. 
It will then output the content of some fields of the equilibrium CPOs. 
*/ 
 
int main(int argc, char *argv[]) 
{ 
    //Class Itm is the main class for the UAL. It contains a set of field classes,  
    //each corresponding to a CPO defined in the UAL 
    //The parameters passed to this creator define the shot and run number. 
    //The second pair of arguments defines the reference shot and run 
    //and is used when the a new database is created, as in this example. 
    //All the UAL classes belong to the ItmNs namespace 
 
    ItmNs::Itm itm(123,1,123,0); 
 
    itm.open(); //Open the database 



     
    //Read the whole array of pfsupplies CPOs  
     itm._pfsystemsArray.get(); 
 
     //field array of inner class _equilbriumArray is a blitz array containing 
     // the array of CPOs 
     //(objects of class _equilibrium) 
     cout << "Method get() for pfsupplies CPO returned " <<  
 itm._pfsystemsArray.array.extent(0) << " CPO instances\n"; 
 
     //Print the contents of fields time and pfsupplies.voltage.value 
     for(int i = 0; i < itm._pfsystemsArray.array.extent(0); i++) 
     { 
         cout << "\nCPO " << i << ": time = " << itm._pfsystemsArray.array(i).time <<  
   "profiles_1d.F_dia = " << itm._pfsystemsArray.array(i).pfsupplies.voltage.value  
   <<"\n"; 
     } 
      
     //Dump of the whole CPO array 
     cout << itm._pfsystemsArray.array; 
      
     //Dump only the first slice of the CPO array 
     cout << itm._pfsystemsArray.array(0); 
 
     itm.close(); // Close the database 
} 

      
3.2.4 A C++ example for writing a whole CPO array 
 
//Definition of the class structures in file UALClasses.h 
#include "UALClasses.h" 
/* 
This sample program will create a new pulse file (shot 123, run 1), and then will fill 
two CPOs in in it: equilibrium and and pfsystems. For every CPO three time slices are 
considered. An array of three CPO  
 instances will be created for both equilibrium and pfsystems.  
*/ 
 
int main(int argc, char *argv[]) 
{ 
    //Class Itm is the main class for the UAL. It contains a set of field classes,  
    //each corresponding to a CPO defined in the UAL 
    //The parameters passed to this creator define the shot and run number.  
    //The second pair of arguments defines the reference shot and run 
    //and is used when the a new database is created, as in this example. 
    //All the UAL classes belong to the ItmNs namespace 
 
    ItmNs::Itm itm(123,1,123,0); 
     
    itm.create(); //Create a new instance of database 
 
    //We shall save an array of pfsystems and equilibrium CPOs. These CPO are declared  
    //in the UAL as time-dependent, i.e. they contain  
    //one field which refers to a value depending over time.  
    //For time-dependent CPOs the field "time" is always defined and MUST be filled with  
    //the value of the time the CPO instance refers to 
    //Observe that there are a few CPOs which are not time dependent. For those CPOs 
    //(e.g. summary) only methods put() and get() are defined. 
    //For every time dependent CPO, two classes are defined. The first one is named 
    // <CPO type>, and contains all the fields which 
    //are defined in the CPO structure. The second class is named <CPO name>Array and is  
    //defined to contain an array of _<CPO name> objects. 
    //Class <CPO name>Array is used when dealing with arrays of CPOs, i.e. when using  
    //methods put()and get() 
    //Class <CPO name> is used when dealing with a single CPO instance, i.e. when using 
    //methods putNonTimed(), putSlice() and getSlice(). 
    //In this example we are going to write in the database an array of pfsystems CPOs  
    //and an array of equilibrium  
    //CPOs, so we shall use class _pfsystemsArray and _equilibriumArray. 
    //Observe that all the CPO classes are inner class of class Itm. 



     
    //All arrays here are blitz arrays. 
     
    //Allocate room for 3 CPO instances 
    itm._pfsystemsArray.array.resize(3); 
    itm._equilibriumArray.array.resize(3); 
     
    //Fill some fields of the CPO array instances 
    for(int k = 0; k < 3; k++) 
    { 
            //Fill a string field (datainfo.dataprovider) Strings are represented 
            //by std::string objects  
 
            itm._pfsystemsArray.array(k).datainfo.dataprovider.assign("GAB"); 
            itm._equilibriumArray.array(k).codeparam.parameters.assign("xmltoken"); 
 
            //The following fields are not time dependent, so we put the same value for  
       //every CPO instance. 
            //Note that the UAL refer only to the first instance when saving non time  
            //dependent field, so  
            //it would suffices to store non time dependent field for  
      //itm._pfsystemsArray.array(0). 
             
            //Allocate and fill with sample values field pfcoils.desc_pfcoils.res 
       //(1D float array) 
 
            itm._pfsystemsArray.array(k).pfcoils.desc_pfcoils.res.resize(4); 
            itm._equilibriumArray.array(k).profiles_1d.elongation.resize(4); 
            for(int i = 0; i < 4; i++) 
            { 
                itm._pfsystemsArray.array(k).pfcoils.desc_pfcoils.res(i) = i; 
                itm._equilibriumArray.array(k).profiles_1d.elongation(i) = i; 
            } 
 
            //Allocate and fill field pfcoils.desc_pfcoils.name (1D String array) 
            itm._pfsystemsArray.array(k).pfcoils.desc_pfcoils.name.resize(2); 
            itm._pfsystemsArray.array(k).pfcoils.desc_pfcoils.name(0) = "SAMPLE 1"; 
            itm._pfsystemsArray.array(k).pfcoils.desc_pfcoils.name(1) = "SAMPLE 2"; 
             
 
            //Allocate and fill field  
       //pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r (3D float array). 
            
itm._pfsystemsArray.array(k).pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r.resize(2,3,4); 
            for(int i=0 ; i < 2; i++) 
                for(int j = 0; j < 3; j++) 
                    for(int h = 0; h < 4; h++) 
                        
itm._pfsystemsArray.array(k).pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r(i,j,h)  

= 100*i+10*j+h; 
 
             
             
            //The following field is time dependent. We shall put some values which 
depend on the time value k. 
            //pfsupplies.voltage.value is a 1D time dependent float vector  
            itm._pfsystemsArray.array(k).pfsupplies.voltage.value.resize(4); 
            for(int i = 0; i < 4; i++) 
                itm._pfsystemsArray.array(k).pfsupplies.voltage.value(i) =  
   111*(i+1)+1000*k; 
 
 
            //Never forget to store the time for time dependent CPOs!! 
            itm._pfsystemsArray.array(k).time = k; 
            itm._equilibriumArray.array(k).time = k; 
    } 
    //Now the CPO array is filled, we store in the database via method put() 
    itm._pfsystemsArray.put(); 
    itm._equilibriumArray.put(); 
     
    itm.close(); // Close the database  
} 



 
------------------------------------------------------------------------------------------------------------------------ 
Developer information: testing procedure 
 
A test suite can be generated by going to the cppinterface directory and typing: 
 
make BLITZ_DIR=/afs/efda-itm.eu/project/switm/blitz/blitz-
0.9_X86_64_GNU tests 
 
The full test can then be performed by typing: 
 
./cpptest 
 
This programme tries to write and read every field of every CPO. 
 
All the test files can be deleted by typing: 
 
make clean-tests 
 

3.3 UAL Python Interface 
The ual interface for Python is very close to the C++ one. Only namespace definition and some 
languages specificities differs.  

Declaration 
The UAL functionality is exported by a set of classes which can be accessed in Python by writing  
import ual 

Namespace usage in Python, and field names 
All the UAL classes and methods are defined in the ual package. The UAL Python interface uses 
the numpy package for handling arrays. Refer to the numpy  related documentation for more 
information.  

The main class for the UAL is ual.itm. It contains a set of fields which correspond to the CPO types 
defined in the ITM simulation database. For time-independent CPOs, an inner class with the same 
name is defined, and a field of the ual.itm class is declared, whose name is the name of the CPO 
type. For example, if my_itm_obj is a variable of class ual.itm, itm.summary contains all the fields 
of the summary CPO. CPO fields are then accessed as fields of the corresponding class. For 
example, the string field whose path in the XML definition is summary/datainfo/comment, is 
accessed in Python as itm.summary.datainfo.comment and is represented by Python string type. 
Scalar CPO fields are mapped to the corresponding Python types: int for integer fields and double 
for double and float fields. Mono and multidimensional arrays are instead represented by 
numpy.ndarray objects, thus allowing a very flexible and efficient array management.  

Constructor of ual.itm takes 4 integer parameters: Shot, Run, RefShot, RefRun (the last two 
arguments are currently not used).  
my_itm_obj = ual.itm(123,1,123,0) 

Simulation database creation/open 
The following methods are defined for class ual.itm  



void open() 

• Open the simulation database  
void create() 

• Creates a new simulation database  
void close() 

• Closes the simulation database  
bool isConnected() 

• Return true if a simulation database is currently open  

The last method should be called in order to make sure that open() or create() were successful. 
Method close() is also called by the destructor.  

Read/write for time-independent CPOs 
All these methods return an integer which tells if an error occured. Each of these methods takes an 
optional argument which is the occurence number. If a single occurence of a CPO is used, no 
argument must be given. Normally a python method definition does not contain the type of the 
arguments. But for the sake of clarity, type of awaited arguments are given using a C convention.  
int get(int occ=-1) 

• Read the time-independent CPO in the simulation database  
int put(int occ=-1) 

• Write the time-independent CPO in the simulation database  

For example, the summary CPO is read in the database in the following instruction. my_itm_obj is 
an instance of class ual.itm, for which method open() has been successfully called:  
my_itm_obj.summary.get() 

Upon successful completion the above methods return 0. If a different value is returned, an error 
occurred. Routine char *euitm_last_errmsg() will return a string description of the error which 
occurred last.  

Read/write for time-dependent CPOs 
For time-dependent CPOs, two inner classes and two fields in class ual.itm are defined. The first 
class has the same name of the CPO type, and the corresponding field has the same name. The 
second class has name <CPO type>Array and the corresponding field has the name. The first class 
(and field) is used for all those operation which involve a single CPO sample, that is getSlice() and 
putSlice(). The second class will instead handle all the operation which involve arrays of CPO 
samples, i.e. get() and put().  

The methods defined in the first class are the following. They all return an integer which tells if an 
error occured. Each of these methods takes an optional argument which is the occurence number. If 
a single occurence of a CPO is used, no argument must be given. Normally a python method 
definition does not contain the type of the arguments. But for the sake of clarity, type of awaited 
arguments are given using a C convention.  
int getSlice(int occ=-1, double inTime, char interpolMode) 



• Read this CPO from the simulation database, at the time corresponding to inTime, using the 
interpolation mode specified in interpolMode  

int putSlice(int occ=-1) 

• Append this CPO to the CPO array stored in the simulation database. Only time-dependent 
CPO fields will be written in the database, and the time field of this CPO will specify the 
time this CPO instance refers to  

int replaceLastSlice(int occ=-1) 

• Replace the last CPO in the CPO array stored in the simulation database  
int putNonTimed(int occ=-1) 

• Write in the database the time-independent fields of this CPO  
void flushCache() 

• Flush all data cached in memory for this CPO into the simulation database.  

The definition of two different methods for storing time-dependent and time-independent CPO 
fields allows improving performance. Time-independent CPO fields are in fact required to be stored 
only once in the database, while time-dependent fields need to be appended in the database as many 
times as the number of time samples computed in the simulation.  

The second class is instead used when arrays of CPO samples are handled by the program. i.e for 
get() and put() operation for time-dependent CPOs. The name of this class is the <CPO type>Array, 
and defines an unique field named array which is a blitz array in C++ (resp. a numpy.ndarray in 
Python) of <CPO types> objects (i.e. an array of objects of the first class). The methods defined for 
this class are the following:  
int get(int occ=-1) 

• Read the stored array of CPOs in the simulation database  
int put(int occ=-1) 

• Write in the simulation database the array of CPO samples stored in the array field  
int getResampled(int occ=-1, double start, double end, double step, char 
interpolMode) 

• Resample an array of CPO from the stored array of CPOs in the simulation database. <CPO 
type>Array object built will contain (end-start)/step time slices resampled from the original 
data by using the interpolation defined by interpolMode.  

Once the array of CPO samples has been read from the simulation database, the fields of the ith 
CPO sample are accessed as the ith element of the field array.  
For example, assuming that my_itm_obj is an instance of class ual.itm, the number of pfsystems 
CPO samples read in the simulation database, i.e. after a successful execution of 
my_itm_obj.pfsystemsArray.get(), is given by:  
len(my_itm_obj.pfsystemsArray) 

and the kth element of the CPO field (an array of double) whose path name is 
pfsupplies/voltage/value of the ith CPO samples is given by:  
my_itm_obj.pfsystemsArray.array[i].pfsupplies.voltage.value[k] 



One can read time indexes of given CPO by calling: 

my_itm_obj.getTimes(cpoName) 

where cpoName is a string representing CPO name, e.g. “wall” 

 

Python example of putting a CPO 

#Definition of the class structures in file ual.py 
import ual 
import numpy 
 
''' 
This sample program will create a new pulse file (shot 123, run 2), and then will fill two CPOs in 
it: 
equilibrium and and pfsystems. For every CPO three time slices are considered. An array of three CPO  
 instances will be created for both equilibrium and pfsystems.  
''' 
def write_cpo(): 
        '''Class Itm is the main class for the UAL. It contains a set of field classes, each 
corresponding to a CPO defined in the UAL 
        The parameters passed to this creator define the shot and run number. The second pair of 
arguments defines the reference shot and run 
        and is used when the a new database is created, as in this example. 
        ''' 
         
        my_itm_obj = ual.itm(123,3,123,0) 
         
        my_itm_obj.create() #Create a new instance of database 
         
        #We shall save an array of pfsystems and equilibrium CPOs. These CPO are declared in the UAL 
as time-dependent, i.e. they contain  
        #one field which refers to a value depending over time.  
        #For time-dependent CPOs the field "time" is always defined and MUST be filled with the 
value of the time the CPO instance refers to 
        #Observe that there are a few CPOs which are not time dependent. For those CPOs (e.g. 
summary) only methods put() and get() are defined. 
        #For every time dependent CPO, two classes are defined. The first one is named <CPO name>, 
and contains all the fields which 
        #are defined in the CPO structure. The second class is named <CPO name>Array and is defined 
as an array of <CPO name> objects. 
        #Class <CPO name>Array is used when dealing with arrays of CPOs, i.e. when using methods 
put(), get() and getResampled() 
        #Class <CPO name> is used when dealing with a single CPO instance, i.e. when using methods 
putNonTimed(), putSlice() and getSlicce(). 
        #In this example we are going to write in the database an array of pfsystems CPOs and an 
array of equilibrium  
        # CPOs, so we shall use class pfsystemsArray and equilibriumArray. 
        #Observe that all the CPO classes are inner class of class Itm. 
         
        #All arrays here are numpy.ndarray objects. 
         
        #Allocate room for 3 CPO instances 
        nb_cpos=3 
        my_itm_obj.pfsystemsArray.resize(nb_cpos) 
        my_itm_obj.equilibriumArray.resize(nb_cpos) 
         
        #Fill some fields of the CPO arrayinstances 
        for k in range(nb_cpos): 
                #Fill a string field (datainfo.dataprovider) Strings are represented by std::string 
objects  
                my_itm_obj.pfsystemsArray.array[k].datainfo.dataprovider = 'GAB' 
                my_itm_obj.pfsystemsArray.array[k].datainfo.putdate = '16/02/2009' 
                my_itm_obj.equilibriumArray.array[k].codeparam.parameters = 'xmltoken' 
 
                #The following fields are not time dependent, so we put the same value for every CPO 
instance. 
                #Note that the UAL refer only to the first instance when saving non time dependent 
field, so in  
                #it would suffices to store non time dependent field for 
itm._pfsystemsArray.array(0). 
                 



                #Allocate and fill with sample values field pfcoils.desc_pfcoils.res (1D float 
array) 
                nb_values = 4 
                res_loc = numpy.resize(my_itm_obj.pfsystemsArray.array[k].pfcoils.desc_pfcoils.res, 
nb_values) 
                elongation_loc = 
numpy.resize(my_itm_obj.equilibriumArray.array[k].profiles_1d.elongation, nb_values) 
                 
                for i in range(nb_values): 
                        res_loc[i] = i 
                        elongation_loc[i] = i 
                 
                 
                #No copy is performed, only a reference affectation 
                my_itm_obj.pfsystemsArray.array[k].pfcoils.desc_pfcoils.res = res_loc 
                my_itm_obj.equilibriumArray.array[k].profiles_1d.elongation = elongation_loc 
                         
                #Allocate and fill field pfcoils.desc_pfcoils.name (1D String array) 
                my_itm_obj.pfsystemsArray.array[k].pfcoils.desc_pfcoils.name = ['SAMPLE 1', 'SAMPLE 
2'] 
                my_itm_obj.pfsystemsArray.array[k].pfcoils.desc_pfcoils.id = ['ID 1', 'ID 2'] 
                 
                #Allocate and fill field pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r 
   #(3D float array). 
                r_loc = numpy.resize( 
my_itm_obj.pfsystemsArray.array[k].pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r, 
(2,3,4)) 
                for i in range(2): 
                        for j in range(3): 
                                for h in range(4): 
                                        r_loc[i,j,h] = 100.0*i+10.0*j+h 
 
                
my_itm_obj.pfsystemsArray.array[k].pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r = r_loc 
                 
                 
                r_loc2 = numpy.resize( 
my_itm_obj.pfsystemsArray.array[k].pfpassive.pfpageometry.rzcoordinate.r, (2,3)) 
                for i in range(2): 
                        for j in range(3): 
                                r_loc2[i,j] = 100.0*i+10.0*j 
                 
                my_itm_obj.pfsystemsArray.array[k].pfpassive.pfpageometry.rzcoordinate.r = r_loc2 
                 
                #The following field is time dependent. We shall put some values which depend on the 
time value k. 
                #pfsupplies.voltage.value is a 1D time dependent float vector  
                value_loc = 
numpy.resize(my_itm_obj.pfsystemsArray.array[k].pfsupplies.voltage.value, 10) 
                for i in range(10): 
                        value_loc[i] = 111.0*(i+1.0)+1000.0*k 
                 
                my_itm_obj.pfsystemsArray.array[k].pfsupplies.voltage.value = value_loc 
 
                #Never forget to store the time for time dependent CPOs!! 
                my_itm_obj.pfsystemsArray.array[k].time = k 
                my_itm_obj.equilibriumArray.array[k].time = k 
                 
                 
        #Dump all CPO and CPOArray of the itm object. Very verbose !! 
        #print my_itm_obj 
                 
        #Dump only the first time slice of the pfsystemsArray CPO. Still verbose 
        #print my_itm_obj.pfsystemsArray.array[0] 
         
        #Dump only a part of the  first time slice of pfsystemsArray 
        print my_itm_obj.pfsystemsArray.array[0].pfsupplies 
 
        #Now the CPO array is filled, we store in the database via method put() 
        my_itm_obj.pfsystemsArray.put() 
        my_itm_obj.equilibriumArray.put() 
         
         
        #There is no need to explicitly close the database since it is closed by  
  #the destructor of class Itm. 
 
        for i in range(len(my_itm_obj.pfsystemsArray.array)):  



                print "CPO " + str(i) + ": time = " + str(my_itm_obj.pfsystemsArray.array[i].time) + 
" profiles_1d.F_dia = " +  str(my_itm_obj.pfsystemsArray.array[i].pfsupplies.voltage.value)  
 
#       print 
my_itm_obj.pfsystemsArray.array[0].pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r 
#       print 
my_itm_obj.pfsystemsArray.array[0].pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r.flags 
#       print 
my_itm_obj.pfsystemsArray.array[0].pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r.ravel() 
         
write_cpo() 
 

Python example of putting an array of CPO using putSlice mechanism 

#Definition of the class structures in file ual.py 
import ual 
import numpy 
 
''' 
This programs append 20 pfsystems CPO slices for pfsystems CPO. Instead of  
writing the whole CPO array in a single chunk, as done in program put_cpos.py, every slice is saved  
(appended) individually. The usage of this approach makes sense during a simulation in which 
subsequent 
time slices are computed and then appended in the database. 
Here, the inner class pfsystem and equilibrium if the ual.itm class instance are used, instead of  
pfsystemsArray and equilibriumArray, as done in program put_cpos.py. In this case in fact we deal 
with 
a single CPO slice at any time 
''' 
 
def write_cpo(): 
        #Instantiate the Itm object for shot 123, run 2, using shot 123 amd run 0 as reference shot 
        my_itm_obj = ual.itm(123,4,123,0) 
 
        #Create a new instance of database 
        my_itm_obj.create() 
 
        #First fill fields which are not time-dependent. This is cassier out by method putNonTimed() 
                 
        #Fill a string field (datainfo.dataprovider) Strings are represented by std::string objects  
        my_itm_obj.pfsystems.datainfo.dataprovider = "USER" 
 
        #Allocate and fill with sample values field pfcoils.desc_pfcoils.res (1D float array) 
        res_loc = numpy.resize(my_itm_obj.pfsystems.pfcoils.desc_pfcoils.res, 4) 
        for i in range(4): 
                res_loc[i] = i 
 
        #No copy is performed, only a reference change in python 
        my_itm_obj.pfsystems.pfcoils.desc_pfcoils.res = res_loc 
         
        #Allocate and fill field pfcoils.desc_pfcoils.name (1D String array) 
        my_itm_obj.pfsystems.pfcoils.desc_pfcoils.name = ["SAMPLE 1","SAMPLE 2"] 
         
        #Allocate and fill field pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r  
  #(3D float array). 
        r_loc = 
numpy.resize(my_itm_obj.pfsystems.pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r, (2,3,4)) 
        for i in range(2): 
                for j in range(3): 
                        for h in range(4): 
                                r_loc[i,j,h] = 100.0*i+10.0*j+h 
                 
        my_itm_obj.pfsystems.pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r = r_loc    
 
        #Save non time dependent fields 
        my_itm_obj.pfsystems.putNonTimed() 
         
        #Save the time evolution of time dependent firlds  
  #(only pfsupplies.voltage.value is fileld in this example) 
         
        #Resize first (and once) the array. Recall that pfsupplies.voltage.value  
 #is a 1D time dependent array 
        value_loc = numpy.resize(my_itm_obj.pfsystems.pfsupplies.voltage.value, 4) 
        my_itm_obj.pfsystems.pfsupplies.voltage.value = value_loc 
        for k in range(20): 
                 



                for i in range(4): 
                        value_loc[i] = 111.0*(i+1.0)+1000.0*k 
                 
                #Do not forget time!! 
                my_itm_obj.pfsystems.time = k 
                         
                #Append this slice in the database 
                my_itm_obj.pfsystems.putSlice() 
        #Done, let the destructor close the database 
                                         
write_cpo() 

 

Python example to get a CPO array 

#Definition of the class structures in file ual.py 
import ual 
import numpy 
from ualdef import * 
 
''' 
This sample program will open an existing pulse file (shot 123, run 3, created by script 
put_cpos.py) and will  
read the stored (array of) equilibirium CPOs. 
 
It will then output the content of some fields of the equilibrium CPOs. 
''' 
 
#This routine reads an array of pfsystems CPOs in the database, filling some fields of the CPOS 
def read_cpo(): 
        '''Class Itm is the main class for the UAL. It contains a set of field classes, each 
corresponding to a CPO defined in the UAL 
        The parameters passed to this creator define the shot and run number. The second pair of 
arguments defines the reference shot and run 
        and is used when the a new database is created, as in this example. 
        ''' 
        my_itm_obj = ual.itm(123,3,123,0) 
         
        my_itm_obj.open() #Open the database 
         
        #Read the whole array of pfsupplies CPOs  
        my_itm_obj.pfsystemsArray.get() 
         
        #Read a resampled version of the pfsystem 
        #my_itm_obj.pfsystemsArray.getResampled(5.0,10.0,0.5,INTERPOLATION) 
         
         
        #field array of inner class equilbriumArray is a list containing the array of CPOs 
        #(objects of class pfsystems) 
        print "Method get() for pfsupplies CPO returned " + 
str(len(my_itm_obj.pfsystemsArray.array)) + " CPO instances\n"; 
 
#       print 'Dump of the whole CPO array' 
#       print my_itm_obj.pfsystemsArray.array 
         
         
#       print 'Dump only the first slice of the CPO array' 
#       print my_itm_obj.pfsystemsArray.array[0] 
 
        #Print the contents of fields time and pfsupplies.voltage.value 
        for i in range(len(my_itm_obj.pfsystemsArray.array)):  
                print "CPO " + str(i) + ": time = " + str(my_itm_obj.pfsystemsArray.array[i].time) + 
" profiles_1d.F_dia = " +  str(my_itm_obj.pfsystemsArray.array[i].pfsupplies.voltage.value)  
 
read_cpo()      

Python example to get a CPO slice 

#Definition of the class structures in file ual.py 
import sys 
import ual 
import numpy 
 
 



''' 
 This sample program reads the database filled by program put_cpo_slice.py. It takes a time argument 
from the command line, and uses this value to get a time slice in the array of stored pfsystems 
CPOs. 
Linear interpolation is performed if the time lies between stored times. It the time lies outsize 
the  
range of stored times, the upper or lower CPO slice is considered. 
''' 
 
def read_cpo(time): 
         
        #Program put_cpo_slice.py created database for shot 123, run 4 
        #Here refShot and refRun arguments have no meaning 
        my_itm_obj = ual.itm(123,4,123,0) 
        my_itm_obj.open() #Open the database 
         
         
        #Get the  CPO slice corresponding to the passed time 
        #Defining linear interpolation. The other options are CLOSEST_SAMPLE and PREVIOUS_SAMPLE 
        my_itm_obj.pfsystems.getSlice(time, ual.INTERPOLATION) 
 
        #Dump the whole returned CPO 
        print my_itm_obj.pfsystems 
 
 
if len(sys.argv) != 2: 
        print "Usage: get_cpo_slice <time>" 
else: 
        read_cpo(float(sys.argv[1])) 

You can use following ways of aproximation: 

 

ual.CLOSEST_SAMPLE (or it’s integer value – 1) 

ual.PREVIOUS_SAMPLE (or it’s integer value – 2) 

ual.INTERPOLATION (or it’s integer value – 3) 

 
 
 
3.4 JAVA Interface 
 
The main class of the Java interface is UALAccess and is contained in package 
ualmemory.javainterface. 
UALAccess defines a set of inner classes whose names correspond to the CPOs defined in the ITM 
simulation database. 
Class UALAccess defines the following static methods: 
 

- int open(String name, int shot, int run) to open a database instance. 
It returns the identifier to be used in the subsequent calls. 
- int openEnv(String name, int shot, int run, String user, 
String tokamak, String dataversion) to open a database instance with non-
default parameters. It returns the identifier to be used in the subsequent calls. 
- int create(String name, int shot, int run, int refShot, int 
refRun) to create a new database instance (refShot and refRun are currently not used). It 
returns the identifier to be used in the subsequent calls. 
- int createEnv(String name, int shot, int run, int refShot, 
int refRun, String user, String tokamak, String dataversion) to 
create a new database instance with non-default parameters (refShot and refRun are 
currently not used). It returns the identifier to be used in the subsequent calls. 



- void close(int expIdx) to close the current database. 
- void enableMemCache() to enable data caching in memory. 
- void disableMemCache() to disable data caching in memory.  
- void flushAll(int expIdx) to write to disk all the CPOs currently cached in 
memory.  
 

 
When any method in the Java interface fails, an Exception is thrown. UAL methods must therefore 
be put into try blocks.  
For every CPO type defined in the ITM simulation database, an inner class of UALAccess is 
defined, with the same name as the CPO type. The fields of the CPO inner class reflect the XML 
definition of the corresponding CPO type. XML strings are translated to Java String instances, basic 
types are mapped onto the corresponding Java native type (boolean, int, float, double). Arrays are 
translated into support Vector classes. The Vector support classes defined in 
ualmemory.javainterface package are the following: 
 
- Vect1DBoolean 
- Vect1DInt 
- Vect1DFloat 
- Vect1DDouble 
- Vect1DString 
- Vect2DInt 
- Vect2DFloat 
- Vect2DDouble 
- Vect3DInt 
- Vect3DFloat 
- Vect3DDouble 
- Vect4DInt 
- Vect4DFloat 
- Vect4DDouble 
 
Every Support Vect class has a constructor which accepts a native array, and defines the following 
accessor methods:  
 

- int getDim() which returns the total number of elements for that array; 
- int getElementAt(int idx, …) which returns the element at the specified 
index; 
- void setElementAt(int idx,…, <type> element) which puts the passed 
element (whose type depends on the vector type) at the specified index(es); 
- int[] getArray() which returns the set of elements as a 1D native array (using 
row-first ordering); 
 

 
   
 If the CPO is not time dependent, the corresponding class defines the following static methods: 
 

- <CPO type> get(int expIdx, String path) to read the CPO instance from 
the database at the specified path. To use the default CPO instance, specify as path the name 
of the CPO type, otherwise specify <CPO type>/inst, where inst is the instance number for 
that CPO. Argument expIdx is the index returned by open() or create(). 



- void put(int expIdx, String path, <CPO class>  cpo) to write the 
content of the passed CPO instance in the database;  
- void flush(int expIdx, String path) to flush data cached in memory for 
the specified CPO. 
- void discard(int expIdx, String path) to discard data cached in memory 
for the specified CPO. 

 
 
If the CPO is time dependent, the corresponding class defines the following static methods: 
 

- <CPO type> [] get(int expIdx, String path) which read the whole 
array of CPOs stored in the simulation database at the specified path. To use the default 
CPO instance, specify as path the name of the CPO type, otherwise specify <CPO 
type>/inst, where inst is the instance number for that CPO. Argument expIdx is the index 
returned by open() or create(); 
- <CPO type> getSlice(int expIdx, String path, double time, 
int interpolMode)  which reads a single CPO instance corresponding to the passed 
time; 
- void put(int expIdx, String path, <CPO class> cpos[]) which 
writes the whole array of CPOs in the simulation database; 
- void putSlice(int expIdx, String path, <CPO class> cpo) which 
appends the passed CPO instance to the current CPO array in the database. Note that this 
operation writes only time dependent CPO fields; 
- void replaceLastSlice(int expIdx, String path, <CPO class> 
cpo) which replaces the last element of the CPO array in the database; 
- void putNonTimed(int expIdx, String path, <CPO class>  cpo) 
which writes in the database the fields of the CPO which do not depend on time; 
- void flush(int expIdx, String path) to flush data cached in memory for 
the specified CPO. 
- void discard(int expIdx, String path) to discard data cached in memory 
for the specified CPO. 
 

Empty fields in Java CPOs are managed as follows : 
- Empty integer fields are initialised as -999999999 
- Empty real fields are initialised as -9.D40 
- Empty vectors are initialised as « null ».  It is responsibility of the programmer to test for 

the existence of vectors before using Vector accessor methods. 
 
For every timed CPO type, some static methods allow data access based on catalog information: 

- void putdb(int expIdx, String user, String machine, int 
shot, int run, String path, int occurrence, <CPO Type> cpos[]) 
if isref == 1 writes the CPO array in the pulse file and update accordingly catalog 
information. Otherwise (isref == 2) it updates only catalog information, without writing 
anything in the pulse file.  
 
- <CPO type>[] getdb(String user, String machine, int shot, 
int run, String path, int occurrence) returns the CPO array finding the 
correct reference. If that CPO array was saved as a rerence, the pulse file containing the 
actual values is found and is used to retrieve the CPO array. There is no need to previously 
open the database. 
 



- void fillCpoRef(<CPO type>[]cpos, int isRef, String 
refUser, String refMachine, int refShot, int refRun, int 
refOccurrence) fills datainfo fields accordingly. 

 
For untimed CPO types similar methods are defined 

- void putdb(int expIdx, String user, String machine, int 
shot, int run, String path, int occurrence, <CPO Type> cpo) if 
isref == 1 writes the CPO instance in the pulse file and update accordingly catalog 
information. Otherwise (isref == 2) it updates only catalog information, without writing 
anything in the pulse file.  
 
- <CPO type> getdb(String user, String machine, int shot, int 
run, String path, int occurrence) returns the CPO instance finding the 
correct reference. If that CPO was saved as a rerence, the pulse file containing the actual 
values is found and is used to retrieve the CPO array. There is no need to previously open 
the database. 
 
- void fillCpoRef(<CPO type>cpo, int isRef, String refUser, 
String refMachine, int refShot, int refRun, int refOccurrence) 
fills datainfo fields accordingly. 

 
Class UALAccess provides also the following static methods: 
 

 - int createdb(String user, String machine, int shot, String 
dataVersion) which allocates a new run number, creates a new row in entry table, sets 
the environment variables accordingly and creates a new pulse file in the proper directory 
location. It returns the identifier to be used in the subsequent calls. 
- int createdb(String user, String machine, int shot, int run, 
String dataVersion) which creates a new row in entry table, sets the environment 
variables accordingly and creates a new pulse file with the specified run number in the 
proper directory location. It returns the identifier to be used in the subsequent calls. 
- int getRun(int expIdx) which returns the run number for that identifier 
(returned by open/create) 
- int getShot(int expIdx) which returns the shot number for that identifier 
(returned by open/create) 
- Vect1DDouble getTime(int expIdx, String path) to obtain a list of 
times contained in a given CPO.  
 

 
 
3.3.1 A JAVA example for reading and writing CPOs 

 
package ualmemory.javainterface; 
 
import java.io.*; 
 
//Test class for the UAL Java interface 
//The main class of the Java interface ia UALAccess. It defines a set of inner classes 
//whose names correspond 
//to the CPOs defined in the UAL ITM database. 
 
 
class TestUAL 
{ 
    static int expIdx; 



     
            
     
//A sample method to write a some CPO arrays using method put 
    static void samplePut() 
    { 
 
        //Create a new instance of the database 
        try { 
        expIdx = UALAccess.create("euitm", 123, 1, 123, 0); 
        }catch(Exception exc) {System.err.println("Error creating UAL database: " + 
exc);} 
         
        //Instantiate an array of pfsystems objects 
        UALAccess.pfsystems [] pfs = new UALAccess.pfsystems[10]; 
        for(int i = 0; i < 10; i++) 
            pfs[i] = new  UALAccess.pfsystems(); 
         
        //Fill some fields 
        for(int i = 0; i < 10; i++) 
        { 
            //Those fields are not time dependent. Even if in this example their  
            //values are filled for all  
            //the elements of the CPO array, only pfs[0] is considered in the  

     //put() method. 
             
            //A sample string 
            pfs[i].datainfo.dataprovider = "SAMPLE PROVIDER";  
             
            //A sample string array. A set of support vector classes is  
            //defined in the UAL java interface 
            //the naming convention for vector classes is vect<num dimensions>D<type> 
            pfs[i].pfcoils.desc_pfcoils.name = new Vect1DString(2); 
            pfs[i].pfcoils.desc_pfcoils.name.setElementAt(0, "SAMPLE 1"); 
            pfs[i].pfcoils.desc_pfcoils.name.setElementAt(1, "SAMPLE 2"); 
             
            //A 1 dimensional sample vector  
            pfs[i].pfcoils.desc_pfcoils.res = new Vect1DDouble(100); 
            for(int j = 0; j < 100; j++) 
                pfs[i].pfcoils.desc_pfcoils.res.setElementAt(j, j*100); 
            //A three dimensional sample vector  
            pfs[i].pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r = 

         new Vect3DDouble(2,3,4); 
            for(int j = 0; j < 2; j++) 
            { 
                for(int k = 0; k < 3; k++) 
                { 
                    for(int h = 0; h < 4; h++) 
                    { 
             pfs[i].pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r.setElementAt 

(j, k, h, 100*j+10*k+h);             
                    } 
                } 
            } 
           //The following field is time dependent. All the elements of the CPO  

    //array are considered 
             
            //A sample time dependent 1D vector 
            pfs[i].pfsupplies.voltage.value = new Vect1DDouble(4); 
            pfs[i].pfsupplies.voltage.value.setElementAt(0, i); 
            pfs[i].pfsupplies.voltage.value.setElementAt(1, i+1); 
            pfs[i].pfsupplies.voltage.value.setElementAt(2, i+2); 
            pfs[i].pfsupplies.voltage.value.setElementAt(3, i+3); 
             
            //Never forget to write the time for time dependent CPO instances!!!! 
            pfs[i].time = i; 
        } 
         
        //The CPO array is now ready, let's write it into the database in a single  

 //put() operation. 
       //Since it may launch a UALException exception it is inserted in a try block; 



         
        try { 
            UALAccess.pfsystems.put(expIdx, "pfsystems", pfs); 
        }catch(Exception exc) {System.err.println("Error writing in UAL: " + exc);} 
         
        try { 
            UALAccess.close(expIdx, "euitm", 123,1); 
        }catch(Exception exc) {System.err.println("Error closing database: " + exc);} 
         
    } 
         
    /*******************************************************************************8  
    static void samplePutSlice() 
    { 
       //This method does the same as samplePut(), using method putSlice() instead 
       //Create a new instance odf the database 
        try { 
        expIdx = UALAccess.create("euitm", 123, 1, 123, 0); 
        }catch(Exception exc) {System.err.println("Error creating UAL database: " + 
exc);} 
         
        //Now it suffice to instantiate a single CPO 
        UALAccess.pfsystems pf = new UALAccess.pfsystems(); 
         
        //Save first those fields which are not time dependent 
         
        //A sample string 
        pf.datainfo.dataprovider = "SAMPLE PROVIDER";  
 
        //A sample string array. A set of supporty vector classes is defined  

 //in the UAL java interface 
        //the naming convention for vector classes is vect<num dimensions>D<type> 
        pf.pfcoils.desc_pfcoils.name = new Vect1DString(2); 
        pf.pfcoils.desc_pfcoils.name.setElementAt(0, "SAMPLE 1"); 
        pf.pfcoils.desc_pfcoils.name.setElementAt(1, "SAMPLE 2"); 
 
        //A 1 dimensional sample vector  
        pf.pfcoils.desc_pfcoils.res = new Vect1DDouble(100); 
        for(int i = 0; i < 100; i++) 
            pf.pfcoils.desc_pfcoils.res.setElementAt(i, i*10); 
        //A three dimensional sample vector  
        pf.pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r = 

 new Vect3DDouble(2,3,4); 
        for(int i = 0; i < 2; i++) 
            for(int j = 0; j < 3; j++) 
                for(int k = 0; k < 4; k++) 

                                     
pf.pfcoils.desc_pfcoils.pfelement.pfgeometry.rzcoordinate.r.setElementAt 

(i, j, k, 100*i+10*j+k);             
         
        try { 
            UALAccess.pfsystems.putNonTimed(expIdx, "pfsystems", pf); 
        }catch(Exception exc) {System.err.println("Writing CPO slice: " + exc);} 
        //Incrementally save time evolution for timed CPO fields 
         
        //First allocate a Vect1DFloat object with dimension 4 for  field 

 //pf.pfsupplies.voltage.value 
 

        pf.pfsupplies.voltage.value = new Vect1DDouble(4); 
        for(int i = 0; i < 2000; i++) 
        { 
            //Write array elements for sample i 
            pf.pfsupplies.voltage.value.setElementAt(0, i); 
            pf.pfsupplies.voltage.value.setElementAt(1, i+1); 
            pf.pfsupplies.voltage.value.setElementAt(2, i+2); 
            pf.pfsupplies.voltage.value.setElementAt(3, i+3); 
             
            //Never forget the time 
            pf.time = i; 
             
            try { 



                UALAccess.pfsystems.putSlice(expIdx, "pfsystems", pf); 
            }catch(Exception exc){System.err.println("Error appending CPO slice: "+ 
exc);} 
             
        } 
         
        try { 
            UALAccess.close(expIdx, "euitm", 123,1); 
        }catch(Exception exc) {System.err.println("Error closing database: " + exc);} 
         
    } 
 
//************************************************************************************ 
     
    static void sampleGet() 
    { 
        UALAccess.pfsystems []retPfs; 
        //Read the whole array of saved pfsystems CPOs 
        try { 
            expIdx = UALAccess.open("euitm", 123,1); 
        }catch(Exception exc) 

{System.err.println("Error opening database: " + exc); return;} 
        try { 
            //retPfs = UALAccess.pfsystems.get(expIdx, "pfsystems"); 
            retPfs = UALAccess.pfsystems.get(expIdx, "pfsystems/1"); 
            //If get succesful, retPf contains the array of stopred pfsystems CPOs 

 }catch(Exception exc){System.err.println("Error in get operation: " + exc);  
 return;} 

         
        System.out.println("Method get returned " + retPfs.length + " CPOs"); 
        for(int i = 0; i < retPfs.length; i++) 
        { 
            System.out.println("CPO "+ i + ":"); 
 //Write the contents of field pfsystems/pfsupplies/voltage/value 
            for(int j = 0; j < retPfs[i].pfsupplies.voltage.value.getDim(); j++) 
                System.out.print("" +  

retPfs[i].pfsupplies.voltage.value.getElementAt(j)); 
            System.out.println(""); 
        } 
         try { 
            UALAccess.close(expIdx, "euitm", 123,1); 
        }catch(Exception exc) {System.err.println("Error closing database: " + exc);} 
   } 
 
//***************************************************************************** 
    static void sampleGetSlice() 
    { 
        UALAccess.pfsystems retPf; 
        //Read a resampled version of the stored CPO array 
        try { 
            expIdx = UALAccess.open("euitm", 123,1); 
        }catch(Exception exc){System.err.println("Error opening database: " + exc);} 
         
        //Get the CPO slice corresponding to time 5.6, performing linear interpolation  
        try { 
        retPf = UALAccess.pfsystems.getSlice(expIdx, "pfsystems", 

 5.6, UALAccess.INTERPOLATION); 
        }catch(Exception exc){System.err.println("Error getting CPOslice: " + exc);  

return;} 
     
        //Utility method dump is defined for all CPOs and writes the content of the CPO  
  //instance.  
        retPf.dump(); 
         try { 
            UALAccess.close(expIdx, "euitm", 123,1); 
        }catch(Exception exc) {System.err.println("Error closing database: " + exc);} 
    } 
     
   
 



3.5 Matlab Interface 
 
NB: Starting from version 4.07b, the name of Matlab UAL functions have been changed for 
harmonisation with the Fortran UAL. The older names can still be used for the moment but will 
rapidly become obsolete, thus it is recommended to move to the new names. 
 
The Matlab interface is developed as an additional layer on top of the Java interface. 
 
Just before starting your Matlab session you must set up the UAL settings by executing the 
following instruction :  
 
source /afs/efda-itm.eu/project/switm/scripts/ITMv1 Username 
TokamakName DataVersion  
 
Username and TokamakName are respectively the user and machine name of the ITM database in 
which you wish to work (see the Database documentation for creating your private database and 
tokamak names).  
DataVersion is the version of the data structure to be used.  
Example: source /afs/efda-itm.eu/project/switm/scripts/ ITMv1 
my_username test 4.07a 
 
Caution : if there is a call to ITMv1 in your .cshrc script, Matlab will execute .cshrc when launched, 
thus overriding any previous settings you have conciously made with ITMv1 in your X-terminal. 
When using Matlab, you must be sure that the .cshrc ITMv1 settings correspond to the data version 
you wish (and database). 
------------------------------------------------------------------------------------------------------------------------ 
New ITM simulation databases are created as follows: 
 
idx = euitm_create(treename, shot, run, refshot, refrun); 
 
where: 
  - treename is the name of the ITM database, i.e. ‘euitm’ (mandatory); 
 - shot, run are the shot and run number of the database being created; 
 - refshot, refrun are the shot and run number of the reference database (currently not used) 
 - idx is the returned identifier to be used in the subsequent data access operation. 
 
The new simulation can also be created in a database different from the current one via routine 
 
idx = euitm_create_env(treename, shot, run, refshot, refrun, user, 
tokamak, dataversion) 
 
------------------------------------------------------------------------------------------------------------------------ 
Existing simulation databases are open via routine  
 
idx = euitm_open(treename, shot, run); 
 
where: 
 - treename is the name of the ITM database, i.e. ‘euitm’ (mandatory); 
 - shot, run are the shot and run number of the database to open; 
 - idx is the returned integer identifier to be used in the subsequent data access operation. 
 



Multiple datasets of the ITM database can be open at the same time. The returned idx parameter is 
used to re-direct I/O accordingly.  
 
The new simulation can also be opened from a database different from the current one via routine 
 
idx = euitm_open_env(treename, shot, run, user, tokamak, 
dataversion) 
------------------------------------------------------------------------------------------------------------------------ 
An open database is closed via routine: 
 
euitm_close(idx); 
 
where idx is the parameter returned by the open or create routine.  
 
------------------------------------------------------------------------------------------------------------------------ 
CPO declaration and usage: 
 
CPOs received from a GET call are authentic Matlab structures consistent with the ITM data 
structure. They are manipulated as any other Matlab structures and variables. A CPO with multiple 
time slices is received as an array of structure, e.g. equilibrium(i) where i is the time slice index. For 
example, field datainfo/dataprovider of the first time slice of a returned equilibrium CPO 
array (cpotest) is identified by:  
 
cpotest(1).datainfo.dataprovider 
 
 
The CPO_gen function initialises an empty CPO structure as a Matlab object. It can be used in the 
following way: 
 
For a time-independent CPO or a CPO with a single time slice : 
cpovar = CPO_gen(cponame); 
 
For a time-dependent CPO with multiple time slices : 
cpovar = CPO_gen(cponame,nslice); 
 
where  
- cponame is the name of the CPO, e.g. ‘vessel’ or ‘equilibrium’ 
- nslice the desired number of time slices 
- cpovar is the returned Matlab structure consistent with the data structure 
 
New (2009-11-27): It is now possible to “put” a CPO in Matlab format. This format is therefore the 
preferred way of manipulating CPOs. It should no longer be necessary for the user to handle Java 
CPOs (which will still be used internally in a transparent way). Functions allocate_xxx 
continue to exist but they will soon become obsolete. It is recommended not to use them anymore. 
 
It is also mandatory to fill the “time” field of every time-dependent CPO samples prior to 
inserting it in the simulation database. 
 
 
------------------------------------------------------------------------------------------------------------------------ 



The following routine will get either a time-independent CPO or an array of time dependent CPO 
samples (multiple time slices): 
 
retcpo=euitm_get(idx,cpopath); 
 
where: 

- idx is the identifier returned by open or create; 
- cpopath is the (name,occurrence) of the CPO (e.g. “equilibrium” or “equilibrium/1”, 
see 2.4) Note: occurrences are now working. 
- retcpo is the returned CPO or CPO array 

 
After CPO_get has been successfully executed, the array of CPO samples is contained in the 
returned retcpo variable. The number of returned samples (time slices) can be inspected by 
calling function length(retcpo), and the CPO fields are specified by the field name (the same 
as  in the XML definition of the CPO structure).  
 
------------------------------------------------------------------------------------------------------------------------ 
The following routine will get a single time slice of a time-dependent CPO: 
 
retcpo=euitm_get_slice(idx,cpopath,twant,interpol);  
 
where: 

- idx is the identifier returned by open or create; 
- Cpopath is the (name,occurrence) of the CPO (e.g. “equilibrium” or “equilibrium/1”, 
see 2.4) Note: occurrences are now working. 
- retcpo is the returned CPO time slice. It is NOT an array.  
- twant is the time value wanted by the user 
- interpol is the interpolation mode (1,2 or 3) as defined in section 2.3 

 
------------------------------------------------------------------------------------------------------------------------ 
Matlab CPOs already filled (see above) can be written in the simulation database via routine: 
 
euitm_put(idx,cpopath,cpovar); 
 
where: 
 

- idx is the identifier returned by either create or open; 
- cpopath is the (name,occurrence) of the CPO (e.g. “equilibrium” or “equilibrium/1”, 
see 2.4) Note: occurrences are now working  
- cpovar is the variable holding the CPO.  

 
Note that this routine will in first place erase any values that could have been written to this CPO 
before.  
 
------------------------------------------------------------------------------------------------------------------------ 
Timed Matlab CPOs already filled (see above) can be written as a new slice via routine: 
 
euitm_put_slice(idx,cpopath,cpovar); 
 
where: 
 



- idx is the identifier returned by either create or open; 
- cpopath is the (name,occurrence) of the CPO (e.g. “equilibrium” or “equilibrium/1”, 
see 2.4) Note: occurrences are now working 
- cpovar is the variable holding a single CPO sample.  

 
------------------------------------------------------------------------------------------------------------------------ 
Non-time-dependent fields of timed Java CPOs can be written via routine: 
 
euitm_put_non_timed(idx,cpopath,cpovar); 
 
where: 
 

- idx is the identifier returned by either create or open; 
- cpopath is the (name,occurrence) of the CPO (e.g. “equilibrium” or “equilibrium/1”, 
see 2.4) Note: occurrences are now working 
- cpovar is the variable holding a single CPO sample.  

 
Euitm_put_non_timed first reinitialises the CPO, therefore it must be used first to populate the time 
independent fields, then use euitm_put_slice to fill the successive time slices. 
 
------------------------------------------------------------------------------------------------------------------------ 
It is possible to obtain a list of times contained in a given CPO, using the following instruction: 
 
times = euitm_get_time(idx,cpopath) 
 
where: 

- idx is the identifier returned by either create or open 
- cpopath is the (name,occurrence) of the CPO 
- times is an output vector that returns the values of the times 

 
------------------------------------------------------------------------------------------------------------------------ 
The list of non-empty fields of a Matlab CPO structure can be obtained with: 
 
list=list_content(CPO); 
 
Note that CPO must contain a single time, so for time-dependent CPOs with multiple time-slices, 
use CPO(t) instead of just CPO. 
 
------------------------------------------------------------------------------------------------------------------------ 
The following routine enables data caching in memory: 
 
euitm_enable_mem_cache() 
 
Conversely, the following routine disables data caching: 
 
euitm_disable_mem_cache() 
 
When data caching is enabled, data in memory for a given CPO (or CPO array) is flushed on disk 
by calling the following routine: 
 
euitm_flush(idx,cpopath) 



 
where: 

- idx is the identifier returned by either create or open; 
- cpopath is the path name of the CPO to be flushed in the simulation database; 

 
All the CPOs can be flushed at once with: 
 
euitm_flush_all(idx) 
 
where idx is the identifier returned by either create or open. 
 
On the other hand, if a CPO is not to be saved to disk, it can be discarded with: 
 
euitm_discard(idx,cpopath) 
 
where: 

- idx is the identifier returned by either create or open; 
- cpopath is the path name of the CPO to be discarded; 

 
------------------------------------------------------------------------------------------------------------------------ 
3.5.1 A Matlab example for reading an array of CPO samples  
function out= test_get_equil(shot, run) 
% shot and run are the desired shot and run numbers (ITM database identifiers) 
 
expIdx = euitm_open ('euitm', shot, run); 
 
out=euitm_get(expIdx, 'equilibrium'); 
 
disp(sprintf('datainfo.dataprovider = %s ', out(1).datainfo.dataprovider)); 
disp(sprintf('codeparam.codename = %s', out(2).codeparam.codename)); 
disp(sprintf('global_param.li = %d',out(1).global_param.li)); 
disp('profiles_1d.pprime') 
disp(out(1).profiles_1d.pprime) 
disp(['Size of equilibrium CPO = ',int2str(length(out))]) 
disp(sprintf('Time slice 1 : profiles_2d.psi_grid(1,:) = %d', 
out(1).profiles_2d.psi_grid(1,:))); 
%disp(sprintf('Time slice 2 : profiles_2d.psi_grid(4,:) = %d', 
out(2).profiles_2d.psi_grid(4,:))); 
disp(sprintf('Time slice 1 : profiles_2d.psi_grid(:,3) = %d', 
out(1).profiles_2d.psi_grid(:,3))); 
 
euitm_close(expIdx); 
 
3.5.2 A Matlab example for writing an array of CPO samples  
function test_put_equil(shot, run, nb, time) 
% shot and run are the desired shot and run numbers (ITM database identifiers) 
% nb : is the desired number of time slices 
% time : is an arbitrary value for the initial time of the CPO (used in this 
example for filling the CPO values, but not useful in general) 
 
expIdx = euitm_create('euitm', shot, run, 0,0); 
 
equil= CPO_gen('equilibrium',nb); 
 
val1D=[1:10]; 
val2D=[1:10; 11:20]; 
for i = 1: nb 



 
    equil(i).datainfo.dataprovider = 'YB, FI'; 
    equil(i).codeparam.codename='test_equilibrium_put matlab'; 
    equil(i).global_param.li= 1.0 + i ; 
 
    equil(i).profiles_1d.pprime=val1D.*i; 
 
    equil(i).profiles_2d.psi_grid=val2D.*i; 
     
    equil(i).time = time + i; 
 
end 
euitm_put(expIdx,'equilibrium',equil); 
euitm_close(expIdx); 
 
------------------------------------------------------------------------------------------------------------------------ 
Developer information: testing procedure 
 
A test suite can be generated by going to the matlabinterface directory and typing: 
 
make tests 
 
The full test can then be performed inside Matlab by typing: 
 
euitm_test 
 
This routine tries to write and read every field of every CPO. Individual CPOs can also be tested 
with: 
 
test_xxx 
 
where xxx must be replaced with a CPO name (for instance test_coreprof). 
 
All the test functions can be deleted by exiting Matlab and typing: 
 
make clean-tests 
 
 
4 The Low Level Layer API 
 
All the high level UAL interfaces never perform directly I/O in the underlying database, but use the 
API provided by a low level library. Currently, the low level library provides support for MDSplus 
databases and HDF5 files (currently under test).  
This section is of interest only for developers of new high level UAL interfaces, since none of the 
exported routines is visible in the high level interface. 
The interface listed below is derived by the include file ual_low_level.h, which defines all the 
prototypes of the low level library. No data structures are defined at this level, and get/put operation 
refer always to a single data item, specified by the combination of arguments cpoPath and path. 
cpoPath is the path name of the CPO root in the ITM simulation database (for the default instance 
this corresponds to the CPO type in the database XML definition, otherwise it is <CPO 
type>/<instance number>. path is the path name (expressed using XPath Syntax) of the CPO 
fields with reference to the CPO root. All the get and put routines define as first argument the 
integer identifier returned by euitm_open() or euitm_create().  



For time-independent CPOs there is a straighfoward mapping between the types of the CPO fields 
and the data types stored in the database. The same holds for time-independent fields of time-
dependent CPOs. For time-dependent fieds, the dimension is increased by one (with respect to the 
dimension declared in the XML definition) in order to account for the fact that the database field is 
storing data for a (unidimensional) array of CPO samples. For example, if a CPO time-dependent 
field is declared as scalar in the XML definition (and therefore will be represented by a scalar value 
in the high level representation of that CPO), it will be stored as an 1D array in the simulation 
database, where each sample corresponds to the value of the field in the corresponding CPO 
sample.  
The mapping between N-dimensional database fields and N-1-dimensional arrays in the 
corresponding CPO field for a time-dependent CPO array, as well as packing single fields into CPO 
objects, is performed by the high level layer.  
For every I/O operation handling arrays, a pointer to the corresponding linearized data array is 
passed. The low level UAL assumes column-first ordering for multidimensional arrays, where the 
last dimension is the dimension of the CPO array (for stored arrays describing time-dependent CPO 
fields). For example a time-dependent CPO field which is represented by a 1D array with 10 
elements will be stored in the simulation database, for an array of 5 CPO samples, as a (10x5) 
bidimensional array. 
 
All the get/put routines return an integer status. 0 means success, otherwise, the corresponding error 
message is retrieved via routine *euitm_last_errmsg() 
 
 
 
 
4.1 put routines 
The put routines use the following naming convention: 
put<type>() for writing scalar values and putVect<dim>D<type>[P]() for writing arrays 
(in this case, besides the pointer to the data array, the array dimension(s) are also passed as well as a 
Boolean flag which indicates whether data refer to a time-dependent CPO field. In addition there 
are routines for parallel HDF5 output which have a P attached to their signature. These need the 
additional subDomain structure to identify the local datasets of each process within the global 
domain. 
 
int putString(int expIdx, char *cpoPath, char *path, char *data); 
int putInt(int expIdx, char *cpoPath, char *path, int data); 
int putFloat(int expIdx, char *cpoPath, char *path, float data); 
int putDouble(int expIdx, char *cpoPath, char *path, double data); 
int putVect1DString(int expIdx, char *cpoPath, char *path, char **data, int dim, 
int isTimed); 
int putVect1DInt(int expIdx, char *cpoPath, char *path, int *data, int dim, int 
isTimed); 
int putVect1DFloat(int expIdx, char *cpoPath, char *path, float *data, int dim, 
int isTimed); 
int putVect1DDouble(int expIdx, char *cpoPath, char *path, double *data, int 
dim, int isTimed); 
int putVect2DInt(int expIdx, char *cpoPath, char *path, int *data, int dim1, int 
dim2, int isTimed); 
int putVect2DFloat(int expIdx, char *cpoPath, char *path, float *data, int dim1, 
int dim2, int isTimed); 
int putVect2DDouble(int expIdx, char *cpoPath, char *path, double *data, int 
dim1, int dim2, int isTimed); 
int putVect3DInt(int expIdx, char *cpoPath, char *path, int *data, int dim1, int 
dim2, int dim3, int isTimed); 
int putVect3DFloat(int expIdx, char *cpoPath, char *path, float *data, int dim1, 
int dim2, int dim3, int isTimed); 



int putVect3DDouble(int expIdx, char *cpoPath, char *path, double *data, int 
dim1, int dim2, int dim3, int isTimed); 
int putVect4DInt(int expIdx, char *cpoPath, char *path, int *data, int dim1, int 
dim2, int dim3, int dim4, int isTimed); 
int putVect4DFloat(int expIdx, char *cpoPath, char *path, float *data, int dim1, 
int dim2, int dim3, int dim4, int isTimed); 
int putVect4DDouble(int expIdx, char *cpoPath, char *path, double *data, int 
dim1, int dim2, int dim3, int dim4, int isTimed); 
 
int hdf5PutVect1DIntP(int expIdx, char *cpoPath, char *path, int *data, struct 
subDomain *sDomain, int isTimed); 
int hdf5PutVect1DFloatP(int expIdx, char *cpoPath, char *path, float *data, 
struct subDomain *sDomain, int isTimed); 
int hdf5PutVect1DDoubleP(int expIdx, char *cpoPath, char *path, double *data, 
struct subDomain *sDomain, int isTimed); 
int hdf5PutVect2DIntP(int expIdx, char *cpoPath, char *path, int *data, struct 
subDomain *sDomain, int isTimed); 
int hdf5PutVect2DFloatP(int expIdx, char *cpoPath, char *path, float *data, 
struct subDomain *sDomain, int isTimed); 
int hdf5PutVect2DDoubleP(int expIdx, char *cpoPath, char *path, double *data, 
struct subDomain *sDomain, int isTimed); 
int hdf5PutVect3DIntP(int expIdx, char *cpoPath, char *path, int *data, struct 
subDomain *sDomain, int isTimed); 
int hdf5PutVect3DFloatP(int expIdx, char *cpoPath, char *path, float *data, 
struct subDomain *sDomain, int isTimed); 
int hdf5PutVect3DDoubleP(int expIdx, char *cpoPath, char *path, double *data, 
struct subDomain *sDomain, int isTimed); 
 
 
 
 
4.2 putSlice routines 
The putSlice routines use the following naming convention: 
put<type>Slice() for writing scalar values and putVect<dim>D<type>Slice>[P]() 
for writing arrays. Note that in this case the dimension of the CPO fields is the same of that declared 
in the XML description, even for time-dependent fields. putSlice routine will also require the time 
argument, i.e. the time to which the CPO sample refers to. In addition there are routines for parallel 
HDF5 output which have a P attached to their signature. These need the additional subDomain 
structure to identify the local datasets of each process within the global domain. 
 
 
 
int putIntSlice(int expIdx, char *cpoPath, char *path, int data, double time); 
int putFloatSlice(int expIdx, char *cpoPath, char *path, float data, double 
time); 
int putDoubleSlice(int expIdx, char *cpoPath, char *path, double data, double 
time); 
int putStringSlice(int expIdx, char *cpoPath, char *path, char *data, double 
time); 
int putVect1DIntSlice(int expIdx, char *cpoPath, char *path, int *data, int dim, 
double time); 
int putVect1DFloatSlice(int expIdx, char *cpoPath, char *path, float *data, int 
dim, double time); 
int putVect1DDoubleSlice(int expIdx, char *cpoPath, char *path, double *data, 
int dim, double time); 
int putVect2DIntSlice(int expIdx, char *cpoPath, char *path, int *data, int 
dim1, int dim2, double time); 
int putVect2DFloatSlice(int expIdx, char *cpoPath, char *path, float *data, int 
dim1, int dim2, double time); 
int putVect2DDoubleSlice(int expIdx, char *cpoPath, char *path, double *data, 
int dim1, int dim2, double time); 



int putVect3DIntSlice(int expIdx, char *cpoPath, char *path, int *data, int 
dim1, int dim2, int dim3, double time); 
int putVect3DFloatSlice(int expIdx, char *cpoPath, char *path, float *data, int 
dim1, int dim2, int dim3, double time); 
int putVect3DDoubleSlice(int expIdx, char *cpoPath, char *path, double *data, 
int dim1, int dim2, int dim3, double time); 
int putVect4DIntSlice(int expIdx, char *cpoPath, char *path, int *data, int 
dim1, int dim2, int dim3, int dim4, double time); 
int putVect4DFloatSlice(int expIdx, char *cpoPath, char *path, float *data, int 
dim1, int dim2, int dim3, int dim4, double time); 
int putVect4DDoubleSlice(int expIdx, char *cpoPath, char *path, double *data, 
int dim1, int dim2, int dim3, int dim4, double time); 
 
int hdf5PutVect1DIntSliceP(int expIdx, char *cpoPath, char *path, int *data, 
struct subDomain *sDomain, double time); 
int hdf5PutVect1DFloatSliceP(int expIdx, char *cpoPath, char *path, float *data, 
struct subDomain *sDomain, double time); 
int hdf5PutVect1DDoubleSliceP(int expIdx, char *cpoPath, char *path, double 
*data, struct subDomain *sDomain, double time); 
int hdf5PutVect2DIntSliceP(int expIdx, char *cpoPath, char *path, int *data, 
struct subDomain *sDomain, double time); 
hdf5PutVect2DFloatSliceP(int expIdx, char *cpoPath, char *path, float *data, 
struct subDomain *sDomain, double time); 
int hdf5PutVect2DDoubleSliceP(int expIdx, char *cpoPath, char *path, double 
*data, struct subDomain *sDomain, double time); 
int hdf5PutVect3DIntSliceP(int expIdx, char *cpoPath, char *path, int *data, 
struct subDomain *sDomain, double time); 
int hdf5PutVect3DFloatSliceP(int expIdx, char *cpoPath, char *path, float *data, 
struct subDomain *sDomain, double time); 
int hdf5PutVect3DDoubleSliceP(int expIdx, char *cpoPath, char *path, double 
*data, struct subDomain *sDomain, double time); 
 
 
4.3 get routines 
The get routines use the following naming convention: 
get<type>[P]()  for reading scalar values and getVect<dim>D<type>[P]() for reading 
arrays.  
Besides the common expIdx, cpoPath and path arguments, these routines define a pointer to 
the data buffer pointer. The data buffer is allocated by the get routine (this is why an additional 
level of pointing is required), and has to be freed by the program after its usage via the stdlib 
free() routine.  The dimension(s) of the array is returned in getVect routines. In addition there 
are routines for parallel HDF5 input which have a P attached to their signature. These need the 
additional subDomain structure to identify the local datasets of each process within the global 
domain. 
 
 
int getString(int expIdx, char *cpoPath, char *path, char **data); 
int getFloat(int expIdx, char *cpoPath, char *path, float *data); 
int getInt(int expIdx, char *cpoPath, char *path, int *data); 
int getDouble(int expIdx, char *cpoPath, char *path, double *data); 
int getVect1DString(int expIdx, char *cpoPath, char *path, char  ***data, int 
*dim); 
int getVect1DInt(int expIdx, char *cpoPath, char *path, int **data, int *dim); 
int getVect1DFloat(int expIdx, char *cpoPath, char *path, float **data, int 
*dim); 
int getVect1DDouble(int expIdx, char *cpoPath, char *path, double **data, int 
*dim); 
int getVect2DInt(int expIdx, char *cpoPath, char *path, int **data, int *dim1, 
int *dim2); 
int getVect2DFloat(int expIdx, char *cpoPath, char *path, float **data, int 
*dim1, int *dim2); 



int getVect2DDouble(int expIdx, char *cpoPath, char *path, double **data, int 
*dim1, int *dim2); 
int getVect3DInt(int expIdx, char *cpoPath, char *path, int **data, int *dim1, 
int *dim2, int *dim3); 
int getVect3DFloat(int expIdx, char *cpoPath, char *path, float **data, int 
*dim1, int *dim2, int *dim3); 
int getVect3DDouble(int expIdx, char *cpoPath, char *path, double **data, int 
*dim1, int *dim2, int *dim3); 
int getVect4DInt(int expIdx, char *cpoPath, char *path, int **data, int *dim1, 
int *dim2, int *dim3, int *dim4); 
int getVect4DFloat(int expIdx, char *cpoPath, char *path, float **data, int 
*dim1, int *dim2, int *dim3, int *dim4); 
int getVect4DDouble(int expIdx, char *cpoPath, char *path, double **data, int 
*dim1, int *dim2, int *dim3, int *dim4); 
 
int hdf5GetVect1DIntP(int expIdx, char *cpoPath, char *path, int **data, struct 
subDomain *sDomain); 
int hdf5GetVect1DFloatP(int expIdx, char *cpoPath, char *path, float **data, 
struct subDomain *sDomain); 
int hdf5GetVect1DDoubleP(int expIdx, char *cpoPath, char *path, double **data, 
struct subDomain *sDomain); 
int hdf5GetVect2DIntP(int expIdx, char *cpoPath, char *path, int **data, struct 
subDomain *sDomain); 
int hdf5GetVect2DFloatP(int expIdx, char *cpoPath, char *path, float **data, 
struct subDomain *sDomain); 
int hdf5GetVect2DDoubleP(int expIdx, char *cpoPath, char *path, double **data, 
struct subDomain *sDomain); 
int hdf5GetVect3DIntP(int expIdx, char *cpoPath, char *path, int **data, struct 
subDomain *sDomain); 
int hdf5GetVect3DFloatP(int expIdx, char *cpoPath, char *path, float **data, 
struct subDomain *sDomain); 
int hdf5GetVect3DDoubleP(int expIdx, char *cpoPath, char *path, double **data, 
struct subDomain *sDomain); 
 
 
4.4 getSlice routines 
The getSlice routines use the following naming convention: 
get<type>Slice() for reading scalar values and getVect<dim>D<type>Slice[P]() 
for reading arrays. They are valid only for time-dependent CPO fields, and the returned value has 
the same dimensionality of what is declared in the XML definition (although time-dependent fields 
are stored in the simulation database with an additional dimension). 
Besides the common expIdx, cpoPath and path arguments, these routines define a pointer to 
the data buffer pointer. The data buffer is allocated by the get routine (this is why an additional 
level of pointing is required), and has to be freed by the program after its usage via the stdlib 
free() routine.  The dimension(s) of the array is returned in getVect routines. Three more 
arguments are passed with respect to the get() routines: 

- double time: the time corresponding to the data slice to be retrieved; 
- int interpolMode: the kind of interpolation, i.e either INTERPOLATION, 
CLOSEST_SAMPLE, PREVIOUS_SAMPLE 
- double *retTime: the returned value of the time. This corresponds to the passed 
time when INTERPOLATION is selected, otherwise it is the time associated to the selected 
sample.  

In addition there are routines for parallel HDF5 input which have a P attached to their signature. 
These need the additional subDomain structure to identify the local datasets of each process within 
the global domain. 
 
 
int getStringSlice(int expIdx, char *cpoPath, char *path, char **data, double 
time, double *retTime, int interpolMode); 



int getFloatSlice(int expIdx, char *cpoPath, char *path, float *data, double 
time, double *retTime, int interpolMode); 
int getIntSlice(int expIdx, char *cpoPath, char *path, int *data, double time, 
double *retTime, int interpolMode); 
int getStringSlice(int expIdx, char *cpoPath, char *path, char **data, double 
time, double *retTime, int interpolMode); 
int getDoubleSlice(int expIdx, char *cpoPath, char *path, double *data, double 
time, double *retTime, int interpolMode); 
int getVect1DIntSlice(int expIdx, char *cpoPath, char *path, int **data, int 
*dim, double time, double *retTime, int interpolMode); 
int getVect1DFloatSlice(int expIdx, char *cpoPath, char *path, float **data, int 
*dim, double time, double *retTime, int interpolMode); 
int getVect1DDoubleSlice(int expIdx, char *cpoPath, char *path, double **data, 
int *dim, double time, double *retTime, int interpolMode); 
int getVect2DIntSlice(int expIdx, char *cpoPath, char *path, int **data, int 
*dim1, int *dim2, double time, double *retTime, int interpolMode); 
int getVect2DFloatSlice(int expIdx, char *cpoPath, char *path, float **data, int 
*dim1, int *dim2, double time, double *retTime, int interpolMode); 
int getVect2DDoubleSlice(int expIdx, char *cpoPath, char *path, double **data, 
int *dim1, int *dim2, double time, double *retTime, int interpolMode); 
int getVect3DIntSlice(int expIdx, char *cpoPath, char *path, int **data, int 
*dim1, int *dim2, int *dim3, double time, double *retTime, int interpolMode); 
int getVect3DFloatSlice(int expIdx, char *cpoPath, char *path, float **data, int 
*dim1, int *dim2, int *dim3, double time, double *retTime, int interpolMode); 
int getVect3DDoubleSlice(int expIdx, char *cpoPath, char *path, double **data, 
int *dim1, int *dim2, int *dim3, double time, double *retTime, int 
interpolMode); 
 
int hdf5GetVect1DIntSliceP(int expIdx, char *cpoPath, char *path, int **data, 
struct subDomain *sDomain, double time, double *retTime, int interpolMode); 
int hdf5GetVect1DFloatSliceP(int expIdx, char *cpoPath, char *path, float 
**data, struct subDomain *sDomain, double time, double *retTime, int 
interpolMode); 
int hdf5GetVect1DDoubleSliceP(int expIdx, char *cpoPath, char *path, double 
**data, struct subDomain *sDomain, double time, double *retTime, int 
interpolMode); 
int hdf5GetVect2DIntSliceP(int expIdx, char *cpoPath, char *path, int **data, 
struct subDomain *sDomain, double time, double *retTime, int interpolMode); 
int hdf5GetVect2DFloatSliceP(int expIdx, char *cpoPath, char *path, float 
**data, struct subDomain *sDomain, double time, double *retTime, int 
interpolMode); 
int hdf5GetVect2DDoubleSliceP(int expIdx, char *cpoPath, char *path, double 
**data, struct subDomain *sDomain, double time, double *retTime, int 
interpolMode); 
int hdf5GetVect3DIntSliceP(int expIdx, char *cpoPath, char *path, int **data, 
struct subDomain *sDomain, double time, double *retTime, int interpolMode); 
int hdf5GetVect3DFloatSliceP(int expIdx, char *cpoPath, char *path, float 
**data, struct subDomain *sDomain, double time, double *retTime, int 
interpolMode); 
int hdf5GetVect3DDoubleSliceP(int expIdx, char *cpoPath, char *path, double 
**data, struct subDomain *sDomain, double time, double *retTime, int 
interpolMode); 
 
 
 
4.5 replaceLastSlice routines 
The replaceLastSlice routines use the following naming convention: 
replaceLast<type>Slice() for replacing the last scalar slice in the database and 
replaceLastVect<dim>D<type>Slice() for replacing the last array slice. Observe that 
only the last slice stored in the database can be replaced. If more slices have to be replaces, it is 
necessary to delete the whole field (using deleteData()) and to store again all the data slices.  
 



int replaceLastIntSlice(int expIdx, char *cpoPath, char *path, int data); 
int replaceLastFloatSlice(int expIdx, char *cpoPath, char *path, float data); 
int replaceLastDoubleSlice(int expIdx, char *cpoPath, char *path, double data); 
int replaceLastStringSlice(int expIdx, char *cpoPath, char *path, char *data); 
int replaceLastVect1DIntSlice(int expIdx, char *cpoPath, char *path, int *data, 
int dim); 
int replaceLastVect1DFloatSlice(int expIdx, char *cpoPath, char *path, float 
*data, int dim); 
int replaceLastVect1DDoubleSlice(int expIdx, char *cpoPath, char *path, double 
*data, int dim); 
int replaceLastVect2DIntSlice(int expIdx, char *cpoPath, char *path, int *data, 
int dim1, int dim2); 
int replaceLastVect2DFloatSlice(int expIdx, char *cpoPath, char *path, float 
*data, int dim1, int dim2); 
int replaceLastVect2DDoubleSlice(int expIdx, char *cpoPath, char *path, double 
*data, int dim1, int dim2); 
int replaceLastVect3DIntSlice(int expIdx, char *cpoPath, char *path, int *data, 
int dim1, int dim2, int dim3); 
int replaceLastVect3DFloatSlice(int expIdx, char *cpoPath, char *path, float 
*data, int dim1, int dim2, int dim3); 
int replaceLastVect3DDoubleSlice(int expIdx, char *cpoPath, char *path, double 
*data, int dim1, int dim2, int dim3); 
int replaceLastVect4DIntSlice(int expIdx, char *cpoPath, char *path, int *data, 
int dim1, int dim2, int dim3, int dim4); 
int replaceLastVect4DFloatSlice(int expIdx, char *cpoPath, char *path, float 
*data, int dim1, int dim2, int dim3, int dim4); 
int replaceLastVect4DDoubleSlice(int expIdx, char *cpoPath, char *path, double 
*data, int dim1, int dim2, int dim3, int dim4); 
 
 
 
4.6 begin/end routines 
 
This set of routines has to be called by the high level layer when either a get(), put(), getSlice(), 
putSlice() sequence is going to begin. When applied to a CPO (array) these operations are translated 
by the high level layer into a sequence of similar operations for every field of the current CPO. For 
example, in order to put a CPO into the simulation database, a sequence of put operations will be 
performes, one for every field of the target CPO. In this case it will be required that beginCPOPut() 
be called before the sequence of put() operations, and endCPOPut() be called afterwards. The 
routines below are possibly used by the low level layer to properly configure the underlying system 
and prepare for the following operations. For these routines, the path argument refers to the path 
name of the CPO root. 
 
int beginCPOGet(int expIdx, char *path, int isTimed, int *retSamples); 
void endCPOGet(int expIdx, char *path); 

to be called before and after a sequence of get operations for a given CPO. beginCPOGet 
returns also the number of stored CPO samples. 

 
int beginCPOGetSlice(int expIdx, char *path, double time); 
void endCPOGetSlice(int expIdx, char *path); 

to be called before and after a sequence of getSlice operations for a given CPO. 
beginCPOGetSlice requires the time which will be used by the following getSlice() calls. 

 
int beginCPOPut(int expIdx, char *path); 
void endCPOPut(int expIdx, char *path); 

to be called before and after a sequence of put() calls for time-independent CPOs 
 

int beginCPOPutTimed(int expIdx, char *path, int samples, double *inTimes); 
int endCPOPutTimed(int expIdx, char *path); 



to be called before and afte ra sequence of  put() calls for time-dependent fields of time-
dependent CPOs 
 
 
int beginCPOPutNonTimed(int expIdx, char *path); 
void endCPOPutNonTimed(int expIdx, char *path); 

to be called before and after a sequence of  put() calls for time-indedependent fields of time-
dependent CPOs 

 
int beginCPOPutSlice(int expIdx, char *path); 
void endCPOPutSlice(int expIdx, char *path); 

to be called before and afte ra sequence of  putSlice() calls for a given CPO  
 
int beginCPOReplaceLastSlice(int expIdx, char *path); 
void endCPOReplaceLastSlice(int expIdx, char *path); 

to be called before and afte ra sequence of  replaceLastSlice() calls for a given CPO  
 

4.7 Catalog Functions 
These functions are the low level support for the interface to the ITM catalog. They are currently 
used in the Java Interface to provide High Level Catalog support. 
 
int ual_get_entry_id(char *user, char *machine, int shot, int run,  
 long *retId, char *retDataV) 
 
Return the Entry id and the Data version of the corresponding row in table 
entry.  
 
 
int ual_create_new_run(char *user, char *machine, int shot, char *dataV, int 
*retRun) 
 
Get a new unused run number and create a new row in entry table; 
 
int ual_create_new_run_parent(char *user, char *machine, int shot, char *dataV, 
int *retRun, char *parentUser, char *parentMachine, int parentShot, int 
parentRun); 
 
Get a new unused run number, create a new row in entry table and update children 
table 
 
int ual_put_cpo(char *user, char *machine, int shot, int run, char *cpoName, int 
cpoOccurrence, int isRef, char *refUser, char *refMachine, int refShot, int 
refRun, int refOccurrence); 
 
Get the entry id of the corresponding row in entry table an update cpo_finder 
table to recorf isref related parameters.  
 
 
int ual_get_cpo_ref(char *user, char *machine, int shot, int run, char *cpoName, 
int cpoOccurrence,  
  int *isRef, char *refUser, char *refMachine, int *refShot, int *refRun, int 
*refOccurrence) 
 
Get reference information for the entry(user, machine, shot, run) 
 
 
 
4.8 Miscellanea 
 
 
 



int deleteData(int expIdx, char *cpoPath, char *path); 
delete all data for that CPO field (for all CPOs in in a CPO array) 

 
 
char *euitm_last_errmsg(); 
 return the last error message. To be called when the returned status is not 0. 
 
 
int euitm_create(char *name, int shot, int run, int refShot, int refRun, int 
*retIdx); 

create a new database, corresponding to shot and run number. The name 
argument must be “euitm”. The returned retIdx argument will be used in the 
subsequent get/put routines. 

 
int euitm_open(char *name, int shot, int run, int *retIdx); 

open an existing database, corresponding to shot and run number. The name 
argument must be “euitm”. The returned retIdx argument will be used in the 
subsequent get/put routines. 

 
int euitm_close(int idx); 

close the open database. 
 
void euitm_enable_mem_cache(int isShared, int size) 

enable data caching in memory. If argument isShared is true, the memory is shared among 
processes. Argument size specifies the dimension of the cache. 

 
void euitm_disable_mem_cache(); 

disable data caching. 
 
void euitm_discard_mem(int expIdx, char *cpoPath, char *path); 
 reclaim cache memory used for that data. 
 
 
void euitm_flush(int expIdx, char *cpoPath, char *path) 
 flushes cached data for that CPO field  
 
int getRun(int expIdx) 
 
Get the run number from the experiment idx (returned by open/create) 
 
int getShot(int expIdx) 
  
Get the shot number from the experiment idx 
 
 
4.9 Arrays of structures 
 
Arrays of structures are managed as complex objects. A series of functions similar to the ones 
described above permit to write to these objects and read from them: 
 
void *beginObject(int expIdx); 
 
Initialize room for a generic array of structures 
 
 
void releaseObject(int expIdx, void *obj); 
 
Releases memory for array of structures 
 
 
void *putIntInObject(int expIdx, void *obj, char *path, int idx, int data); 



void *putStringInObject(int expIdx, void *obj, char *path, int idx, char *data); 
void *putFloatInObject(int expIdx, void *obj, char *path, int idx, float data); 
void *putDoubleInObject(int expIdx, void *obj, char *path, int idx, double 
data); 
void *putVect1DStringInObject(int expIdx, void *obj, char *path, int idx, char 
**data, int dim); 
void *putVect1DIntInObject(int expIdx, void *obj, char *path, int idx, int 
*data, int dim); 
void *putVect1DFloatInObject(int expIdx, void *obj, char *path, int idx, float 
*data, int dim); 
void *putVect1DDoubleInObject(int expIdx, void *obj, char *path, int idx, double 
*data, int dim); 
void *putVect2DIntInObject(int expIdx, void *obj, char *path, int idx, int 
*data, int dim1, int dim2); 
void *putVect2DFloatInObject(int expIdx, void *obj, char *path, int idx, float 
*data, int dim1, int dim2); 
void *putVect2DDoubleInObject(int expIdx, void *obj, char *path, int idx, double 
*data, int dim1, int dim2); 
void *putVect3DIntInObject(int expIdx, void *obj, char *path, int idx, int 
*data, int dim1, int dim2, int dim3); 
void *putVect3DFloatInObject(int expIdx, void *obj, char *path, int idx, float 
*data, int dim1, int dim2, int dim3); 
void *putVect3DDoubleInObject(int expIdx, void *obj, char *path, int idx, double 
*data, int dim1, int dim2, int dim3); 
void *putVect4DIntInObject(int expIdx, void *obj, char *path, int idx, int 
*data, int dim1, int dim2, int dim3, int dim4); 
void *putVect4DFloatInObject(int expIdx, void *obj, char *path, int idx, float 
*data, int dim1, int dim2, int dim3, int dim4); 
void *putVect4DDoubleInObject(int expIdx, void *obj, char *path, int idx, double 
*data, int dim1, int dim2, int dim3, int dim4); 
void *putVect5DIntInObject(int expIdx,void *obj, char *path, int idx, int *data, 
int dim1, int dim2, int dim3, int dim4, int dim5); 
void *putVect5DFloatInObject(int expIdx, void *obj, char *path, int idx, float 
*data, int dim1, int dim2, int dim3, int dim4,int dim5); 
void *putVect5DDoubleInObject(int expIdx, void *obj, char *path, int idx, double 
*data, int dim1, int dim2, int dim3, int dim4,int dim5); 
void *putVect6DIntInObject(int expIdx, void *obj, char *path, int idx, int 
*data, int dim1, int dim2, int dim3, int dim4, int dim5, int dim6); 
void *putVect6DFloatInObject(int expIdx, void *obj, char *path, int idx, float 
*data, int dim1, int dim2, int dim3, int dim4,int dim5, int dim6); 
void *putVect6DDoubleInObject(int expIdx, void *obj, char *path, int idx, double 
*data, int dim1, int dim2, int dim3, int dim4,int dim5, int dim6); 
void *putVect7DIntInObject(int expIdx, void *obj, char *path, int idx, int 
*data, int dim1, int dim2, int dim3, int dim4, int dim5, int dim6, int dim7); 
void *putVect7DFloatInObject(int expIdx, void *obj, char *path, int idx, float 
*data, int dim1, int dim2, int dim3, int dim4,int dim5, int dim6, int dim7); 
void *putVect7DDoubleInObject(int expIdx, void *obj, char *path, int idx, double 
*data, int dim1, int dim2, int dim3, int dim4,int dim5, int dim6, int dim7); 
void *putObjectInObject(int expIdx, void *obj, char *path, int idx, void 
*dataObj); 
 
Put data into the array of structures 
 
 
int getStringFromObject(int expIdx, void *obj, char *path, int idx, char 
**data); 
int getFloatFromObject(int expIdx, void *obj, char *path, int idx, float *data); 
int getIntFromObject(int expIdx, void *obj, char *path, int idx, int *data); 
int getDoubleFromObject(int expIdx, void *obj, char *path, int idx, double 
*data); 
int getVect1DStringFromObject(int expIdx, void *obj, char *path, int idx, char  
***data, int *dim); 
int getVect1DIntFromObject(int expIdx, void *obj, char *path, int idx, int 
**data, int *dim); 



int getVect1DFloatFromObject(int expIdx, void *obj, char *path, int idx, float 
**data, int *dim); 
int getVect1DDoubleFromObject(int expIdx, void *obj, char *path, int idx, double 
**data, int *dim); 
int getVect2DIntFromObject(int expIdx, void *obj, char *path, int idx, int 
**data, int *dim1, int *dim2); 
int getVect2DFloatFromObject(int expIdx, void *obj, char *path, int idx, float 
**data, int *dim1, int *dim2); 
int getVect2DDoubleFromObject(int expIdx, void *obj, char *path, int idx, double 
**data, int *dim1, int *dim2); 
int getVect3DIntFromObject(int expIdx, void *obj, char *path, int idx, int 
**data, int *dim1, int *dim2, int *dim3); 
int getVect3DFloatFromObject(int expIdx, void *obj, char *path, int idx, float 
**data, int *dim1, int *dim2, int *dim3); 
int getVect3DDoubleFromObject(int expIdx, void *obj, char *path, int idx, double 
**data, int *dim1, int *dim2, int *dim3); 
int getVect4DIntFromObject(int expIdx, void *obj, char *path, int idx, int 
**data, int *dim1, int *dim2, int *dim3, int *dim4); 
int getVect4DFloatFromObject(int expIdx, void *obj, char *path, int idx, float 
**data, int *dim1, int *dim2, int *dim3, int *dim4); 
int getVect4DDoubleFromObject(int expIdx, void *obj, char *path, int idx, double 
**data, int *dim1, int *dim2, int *dim3, int *dim4); 
int getVect5DIntFromObject(int expIdx, void *obj, char *path, int idx, int 
**data, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5); 
int getVect5DFloatFromObject(int expIdx, void *obj, char *path, int idx, float 
**data, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5); 
int getVect5DDoubleFromObject(int expIdx, void *obj, char *path, int idx, double 
**data, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5); 
int getVect6DIntFromObject(int expIdx, void *obj, char *path, int idx, int 
**data, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5, int *dim6); 
int getVect6DFloatFromObject(int expIdx, void *obj, char *path, int idx, float 
**data, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5, int *dim6); 
int getVect6DDoubleFromObject(int expIdx, void *obj, char *path, int idx, double 
**data, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5, int *dim6); 
int getVect7DIntFromObject(int expIdx, void *obj, char *path, int idx, int 
**data, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5, int *dim6, int 
*dim7); 
int getVect7DFloatFromObject(int expIdx, void *obj, char *path, int idx, float 
**data, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5, int *dim6, int 
*dim7); 
int getVect7DDoubleFromObject(int expIdx, void *obj, char *path, int idx, double 
**data, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5, int *dim6, int 
*dim7); 
int getObjectFromObject(int expIdx, void *obj, char *path, int idx, void 
**dataObj); 
 
Get data from the array of structures 
 
 
int getDimensionFromObject(int expIdx, void *obj, char *path, int idx, int 
*numDims, int *dim1, int *dim2, int *dim3, int *dim4, int *dim5, int *dim6, int 
*dim7); 
 
Retrieves components from array of structures. Returned status indicates success 
(0) or error(!= 0) 
 
 
int getObjectDim(int expIdx, void *obj); 
 
Retrieve the number of elements for the array of structures. Returns -1 if an 
error occurs; 
 
 
int getObject(int expIdx, char *path, char *cpoPath, void **obj, int isTimed); 



 
Read the array of structures from the pulse file. Status indicates as always 
success (0) or error (!= 0) 
 
 
int putObject(int expIdx, char *cpoPath, char *path, void *obj, int isTimed); 
 
Writes an array of structures object to the database. Flag isTImes specifies 
whether the array refers to time-dependent field (in this case the dimension 
refers to time) 
 
 
int getObjectSlice(int expIdx, char *cpoPath, char *path, double time, void 
**obj); 
int putObjectSlice(int expIdx, char *cpoPath, char *path, double time, void 
*obj); 
int replaceLastObjectSlice(int expIdx, char *cpoPath, char *path, void *obj); 
 
Slice management 
 


