

Task Force
INTEGRATED TOKAMAK MODELLING

MODELLING of JET HYBRID SCENARIOS

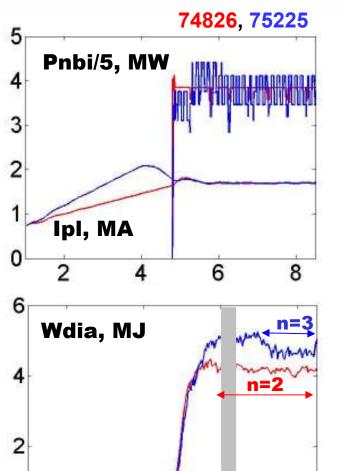
I. Voitsekhovitch, P. Belo, C. Bourdelle, J. Citrin, J. Garcia, L. Garzotti, E. Fable, J. Ferreira, I. Jenkins, J. Hobirk, F. Köchl, X. Litaudon, J. Lönnroth, V. Parail and the ITM-TF ITER Scenario Modelling group

Warm acknowledgements to P. Buratti for MHD analysis

IOS ITPA group meeting 16-19 April 2012, Madrid

Outline:

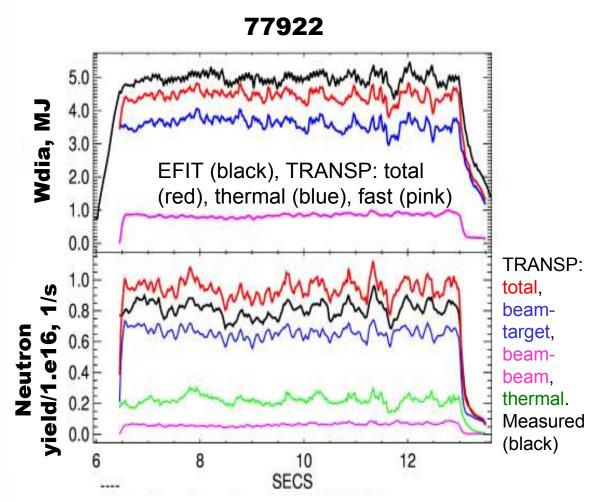
- Experimental scenarios and parameter space (variation in plasma shape, Ipl waveforms, H98y)
- GLF23: self-consistent simulations of toroidal rotation, temperatures and density
- TGLF simulations (preliminary results)
- Validation of Bohm-gyroBohm model
- Summary



8 JET discharges (different shape, NBI power, plasma, current, H98y) have been selected

Pulse #	P _{NBI} MW	NI / 10 ¹⁹ m-3	Central Ω , rad/s	H98y	P(ρ=0.8) , Pa
74641	9.3	3.4	0.79e5	1	0.9e4
74634	17.5	3.4	0.95.e5	1.05	1.3e4
74637	18.9	3.2	1.37e5	1.17	1.2e4
74826	19.2	3	1.06e5	1.05	0.97e4
75225	18	3.2	1.27e5	1.35	1.33e4
79635	6	2.5	0.6e5	1.23	0.49
75590	10	3.1	1.06e5	1.38	1.23e4
77922	17	4.77	1.16e5	1.37	2.07e4

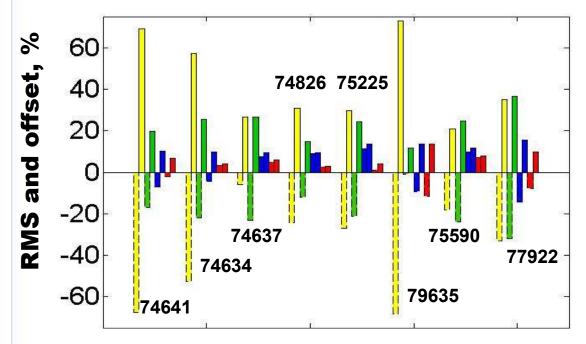
- Low triangularity discharges: 1.7 MA / 2T
- High triangularity: 0.8MA/1.1 T (79635), 1.3MA/1.7 T (75590), 1.7MA/2.3T (77922)
- NTMs: 74826 (strong n=2), 74641 (weak 3/2, 4/3, 2/1), 74634 (weak 2/1, m3, n5), 74637 (4/3, 5/4 during last half of selected Δt), others are NTM-free during selected time interval


J. Hobirk et al, submitted to PPCF

Time,s

Data preparation and consistency

- Fit of High Resolution Thomson Scattering and ECE for Te; HRTS and core Thomson scattering for ne.
- CX measurements of Ti and Zeff profiles
- q-profile: EFIT/MSE reconstruction or TRANSP simulated qprofile when it agrees with EFIT
- TRANSP for NBI heat, particle and momentum sources and wall particle source + ASTRA for transport modelling with GLF23 and TGLF
- JETTO & CRONOS for simulations with BohmgyroBohm model

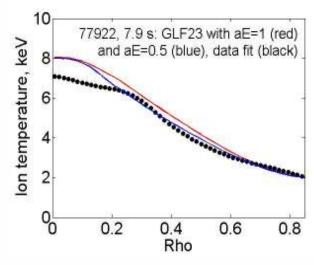

Typical agreement between EFIT/ TRANSP Wdia (top) and simulated/ measured neutron yield (bottom) obtained for 8 discharges

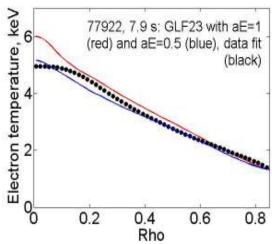
EFDA Task Force EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

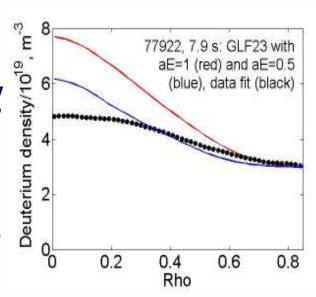
Validation of GLF23 model

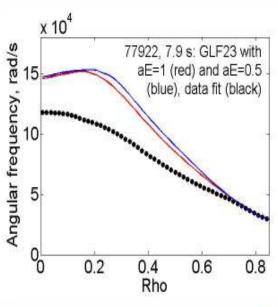
- \triangleright JET hybrids are close to the stability threshold (QualiKiz, GLF23), modelling results may be sensitive to the ExB shear (or αE (= γ max / ωExB))
- \triangleright α E =1 is used for JET H-mode plasmas
- > Te, Ti, Vtor and density are simulated inside $\rho < \rho_{ped} = 0.8 0.85$
- > $χφ = χφ_GLF + χi_neocl, GLF23 + NCLASS for thermal χs and D$

$$rms = \left[\frac{1}{N+M} \sum_{t_n=t_1}^{t_N} \sum_{\rho_m=0}^{\rho_m=0.7} \frac{\{T_{\exp}(t_n, \rho_m) - T_{\sin}(t_n, \rho_m)\}^2}{T_{\exp}(t_n, \rho_m)^2}\right]^{1/2} \qquad offset = \frac{1}{N+M} \sum_{t_n=t_1}^{t_N} \sum_{\rho_m=0}^{\rho_m=0.7} \frac{T_{\exp}(t_n, \rho_m) - T_{\sin}(t_n, \rho_m)}{T_{\exp}(t_n, \rho_m)}.$$

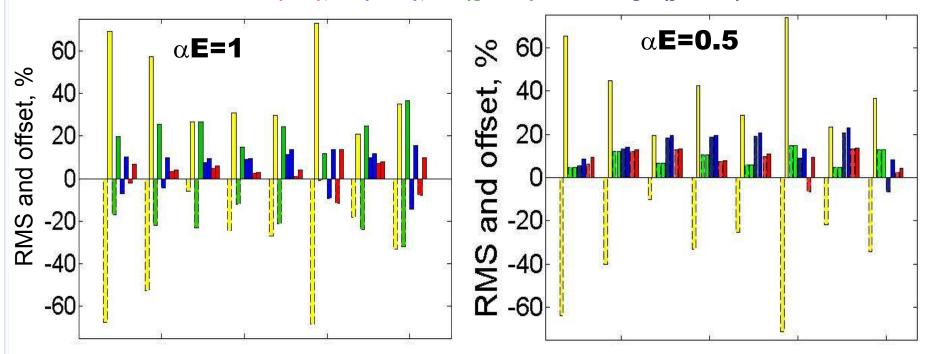

- -Te and Ti are well predicted
- density is overestimated (too strong peaking)
- strongly over-predicted rotation


RMS (solid, right columns) and offset (dashed, left columns) for Te (red), Ti (blue), nd (green) and omega (yellow)


EFDA Task Force EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

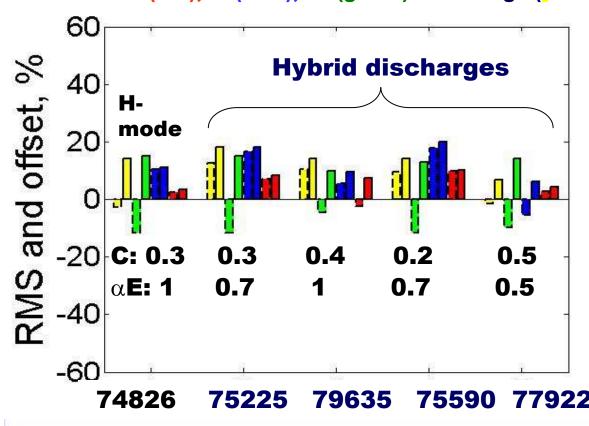

GLF23: effect of ExB shear stabilisation in HS

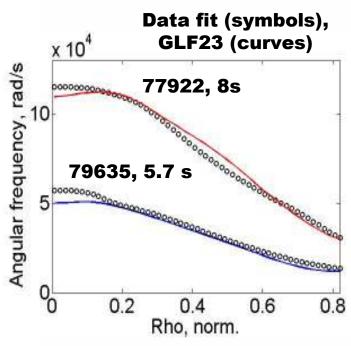
- GLF23 [Waltz et al, PoP 1997]: 0.5 < αE < 1.5
- $\begin{array}{ll} \hline \textbf{Non-linear ITG gyrofluid: } \alpha \textbf{E} \approx \\ \textbf{1, circular ITG gyrokinetic:} \\ \alpha \textbf{E} \approx \textbf{0.6} \\ \end{array}$
- GYRO [Kinsey et al, PoP 2005]:
 - $\alpha E \approx 0.5 \pm 0.1$ without parallel velocity shear (lower at peaked density)
 - no transport quench by ExB shear at large q and parallel velocity shear
- In our simulations αE is adjusted to improve the agreement with data
- Much better density prediction with $\alpha E = 0.5$ for all shots (and shots simulated in J. Citrin et al, PPCF 2012 to appear)
- "Stiff" temperatures and rotation: reduction with αE is compensated by increase via energy & momentum balance (reduced density)
- Toroidal rotation is still strongly under-predicted



GLF23: weak ExB shear stabilisation in HS

RMS (solid, right columns) and offset (dashed, left columns) for Te (red), Ti (blue), nd (green) and omega (yellow)


- density is strongly affected by the ExB shear: better density prediction with $\alpha \text{E=0.5}$
- temperature prediction is less accurate with α E=0.5, but still within 20% deviation from measurements
- strongly over-predicted rotation

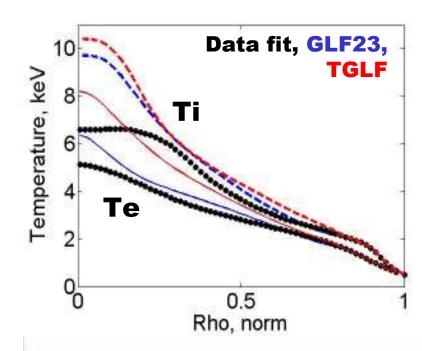


GLF23 for momentum: indications of momentum pinch

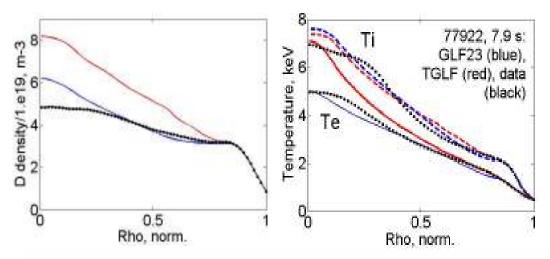
- In previous simulations χφ=χφ_GLF23+χi_neocl
- \triangleright $\chi \varphi$ = C χi _GLF23 + χi _neocl is tested, C is adjusted to match the data
- \triangleright Indication of momentum pinch: C ≠1 (ITG modes give χφ = χi)

RMS (solid, right columns) and offset (dashed, left columns) for Te (red), Ti (blue), nd (green) and omega (yellow)

GLF23: sensitivity to wall particle source and wall source validation (P. Belo)

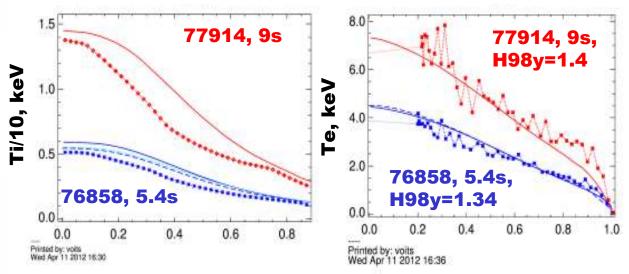

- ightarrow In previous simulations wall source Swall was estimated as 10Dlpha+gas puff
- ightharpoonup R=<Swall / (Swall+Snbi)> = 0.57-0.77 (high δ), 0.83-0.85 (low δ)
- > Sensitivity of 2 high δ discharges (zero gas puff) to wall particle source has been tested in simulations with adjusted α E and C

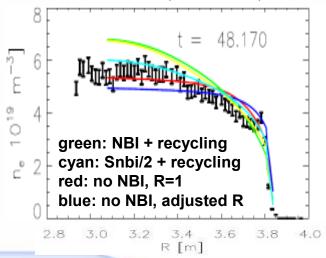
	R (Swall, part/s)	Te: rms, offset, %	Ti: rms, offset, %	ω: rms, offset, %	nd: rms, offset, %
79635	0.77	7.45, -2.38	9.45, 5.54	14.16, 10.52	9.97, -4.72
	0	7.95, -3.18	9.23, 4.68	13.1, 8.67	8.44, -2.01
	1 (6.e22)	13.72, 12.9	22.8, 21.42	48.29, 48.89	55.5, -50.07
77922	0.57	4.32, 2.62	6.09, -5.38	6.77, -1.55	14.15, -9.82
	0	4.21, 2.37	7.78, -6.41	7.43, -2.98	12.78, -7.98
	1 (1.e23)	11.13, 10.45	12.28, 11	32.66, 64.0	36.78, -34.33

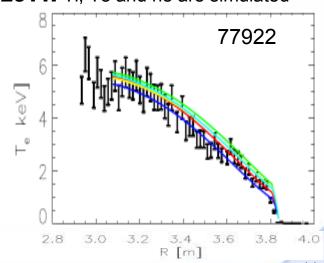

- Artificial constant in time gas puff has been added
- Weak sensitivity to wall source at high pedestal pressure (77822), strong sensitivity at low pedestal (79635)
- Validation of particle source in EDGE2D simulations is in progress

Modelling of JET 77922 with TGLF/ASTRA and comparison with GLF23 (E. Fable)

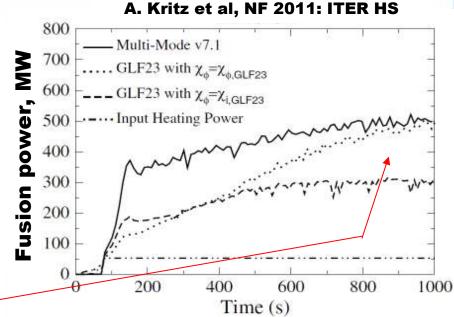
- Te and Ti are simulated with prescribed density and rotation, αE=0.5, similar radial smoothing
- GLF23 and TGLF gives similar results for Ti, but Te is different


- > Te, Ti, nd and Vtor are simulated selfconsistently, α E=0.5, C=0.5
- Fast numerical scheme, TGLF is called in ASTRA every 1 ms, computed in 10 radial grid points
- Inward particle pinch and low diffusion near the edge, ITG-TEM bouncing (ITG and no pinch in case of GLF23)
- Implementation of new TGLF version [G. Staebler, J. Kinsey, NF 2010] in ASTRA is in progress


Validation of Bohm-gyroBohm model on JET HS


- H-mode BohmgyroBohm model (without ExB or magnetic shear stabilisation)
- Pedestal region is simulated (continuous ELM model, ballooning stability limit)
- Good agreement for Te, over-estimated Ti
- Good agreement between JETTO (top, solid) and CRONOS (top dashed)
- Over-estimated density peaking with H-mode BohmgyroBohm model for diffusion (zero pinch) [L. Garzotti et al, EPS 2012]

F. Koechl, J. Garcia, I. Jenkins: simulated Te and Ti (curves) with prescribed ne. Symbols show the measured temperatures



Summary and future work

- > GLF23 modelling of JET hybrids: less than 20% discrepancy with the data when α E = 0.5-0.7, $\chi\phi$ = (0.2-0.5) χ i:
 - JET HS are in ITG dominant regime, close to the stability threshold
 - ExB shear stabilisation is not strong, α E is reduced by factor 2 as compared to its value used for JET H-mode plasmas
 - Other reasons for improved confinement in HS: s/q effect (~ 50% of confinement improvement, J. Citrin et al, PPCF 2012 to appear), stabilisation of tearing modes, better pedestal confinement...
- ➤ **Bohm-gyroBohm:** reasonable Te prediction, but over-estimated Ti and density peaking with H-mode model
- Further steps in JET hybrid modelling:
- (a) theory-based momentum pinch
- (b) EDGE2D validation of particle source
- (c) edge MHD stability
- (d) turbulence simulations in support of αE choice
- ➤ H-mode/HS comparison: [L. Garzotti et al, EPS 2012]
- Impact on ITER hybrid scenario: uncertainty in fusion performance due to overestimated ExB shear and scenario optimisation

Summary of ISM work: X. Litaudon et al, accepted at the EU selection for IAEA 2012