Status of modelling of DIII-D current ramp up discharges and comparison with JET

Acknowledgements: J M Park, R Prater, D Mikkelsen

Outline:

- 1. Experimental scenarios
- 2. Simulation of current diffusion
- Validation of transport models (BohmgyroBohm, GLF23, Coppi-Tang) က က
- 4. Summary

Experimental scenarios

Evolution of density profile in DIIID discharges and comparison with JET

Irina Voitsekhovitch, ISM 10.11.2010 Typical Discharge Submitted to the ITPA Profile Database

Courtesy of J M Park

T_i, V_t [V_p, E_r], Z_{eff}: CER, every 100 msec at beam blip

4

Data consistency (136779)

(blue) and adjusted R_{geo} to match plasma volume (red). Data are shown by black curves. Equilibrium and current diffusion simulations (ASTRA) with provided plasma shape

10.11.2010

S

from utiles.

atabase	Beam blip: - every 100 msec	Time widow: First beam blip time ~ start time of plattop 	Equilibrium reconstruction: - Kinetic efit with MSE constraint	 Every 20 msec 6
nitted to the ITPA Profile Do	0.15 Stored Energy (MJ) Kinetic 0.1 Magnetic Magnetic	0.05 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.4 1.6 1.4 1.6 1.0 Neutron rate (x10 ¹³ /sec)	6 Plastic	0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (s) Courtesv of J M Park
Typical Discharge Subm	1.5 136779 1.0 1.0	0.5 0.0 0.0 1.2 1.2 $\ell_i(3)$ PNB (MW) 1.2 1.4 1.6 1.2 1.4 1.6 1.2 1.4 1.6 1.6 1.2 1.4 1.6	0.8	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Time (s)

10.11.2010

Irina Voitsekhovitch, ISM 10.11.2010

ω

Irina Voitsekhovitch, ISM 10.11.2010

တ

Validation of transport models

- Equilibrium, current diffusion (NCLASS), Te and Ti are simulated
- Prescribed electron density, carbon is the only impurity, no beam ion density
- Measured toroidal rotation
- Central NBI heating, broad heating profiles
- Bohm-gyroBohm, GLF23 and Coppi-Tang models are tested

OH discharge: Bohm-gyroBohm model

Data (black), simulations: reference case (blue), adjusted volume (red)

- Te: under-estimated core temperature during first half of the ramp up, good agreement with the measured profiles later on; - Ti : strongly underestimated at the beginning of current ramp up, accurately predicted after 1 s;

- weak dependence of predicted temperatures on plasma shape

Data (black), simulations: reference case (blue)

- Te: under-estimated core temperature, slightly over-estimated Te around ho = 0.6-0.7 during second half of the ramp up - Ti : strongly underestimated core Ti during first half of the ramp, accurately predicted at the end of the ramp up

OH discharge: GLF23 model

Data (black), simulations: reference case (blue), adjusted volume (red)

- under-predicted core Te, large χ e in the region of peaked density. Over-predicted Te outside mid-radius;

- more accurate Te prediction during the phase with flat ne;

- Ti prediction is relatively accurate outside mid-radius, core temperature is under-predicted during the first half of the current ramp up

Data (black), simulations: reference case (blue)

- selected time slices: 0.74 s (peaked n_e) and 1.42 s (flat n_e);
- destabilising effect of peaked density large χ e and χ i in the region of peaked $n_{
 m e}$ (0.2 $\leq \rho \leq$ 0.4) – flat temperatures
 - more accurate prediction during the 2^{nd} half of the ramp up phase (flat n_e), but still under-estimated core temperature

GLF23 prediction: sensitivity study

Data (black), simulations: reference case (blue), adjusted volume (red)

similar discrepancy between measured and simulated temperatures is obtained for Lmode discharge 136303 [similar conclusions to Jackson et al, Phys. Plasmas 2010]

Irina Voitsekhovitch, ISM 10.11.2010

16

Requests to ITPA/DIII-D:
 need in complete the dataset (jnbi, nbeam) information about the MHD would be useful
Preliminary conclusions for low Btor discharges: (1) current diffusion is consistent with prediction based on neoclassical resistivity (different with ASTRA&TRANSP simulations for JET current ramp up discharges)
(2) BgB: under-predicted core Te and Ti during the 1 st half of the current ramp up, otherwise its prediction is relatively accurate
 (3) GLF23: - destabilising effect of peaked density; - more accurate stability analysis, better model for TEM driven transport (to be discussed with theoreticians?) (JET: ITG-driven transport, accurate GLF23 prediction for NBI heated discharge)
(4) under-predicted core temperatures with BgB and GLF23 models \Rightarrow stabilising effect of flat q-profile?
(5) Coppi-Tang model over-predicts the temperatures (similar for JET plasmas)
Cmod current ramp up data are coming

Summary and future work

•

17 Benchmarking: CT model with CORSICA? GLF23 for momentum transport? •

•