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JET discharge 72516 has been 

selected for benchmarking

- current ramp up discharges 
submitted to the ITPA Profile 
Database –> same data are 
available for all five codes

- NBI heating (4 MW), L-mode 

- time at the end of current ramp up 
(8 s) is selected for benchmarking

- comparison with previously 
analysed discharges: integrated 
torque/nl ~ 2.e-19 Nt/m2

- #72516 is used for benchmarking 
purpose only - rotation is unlikely 
affects the confinement during this 
phase

Volume integrated torque/central line 
averaged density*1.e19, Nt/m2

The discrepancy with GLF23 model at r/a=0.5 
averaged over 1 s during the stationary phase of 

discharge and plotted as a function of NBI torque per 
particle. [I. Voitsekhovitch et al, EPS 2006]

72516
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TRANSP [R J Goldston]:

m =<R2>ωΣωΣωΣωΣjnj*Mj,   ωωωω(√Φ√Φ√Φ√Φ) = Vϕϕϕϕ/R (sum over thermal ion species)

Equation for toroidal rotation in various 

codes:

where F is specified by user. Torque 
and losses should correspond to the 
choice of F

CRONOS [J F Artaud et al, NF 2010]:
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ASTRA [G Pereverzev, P Yushmanov, IPP-2002]:

JETTO solves the equation for Vtor

2' 2
'

1
j j

j

Torque losses V R M
t V

m m
ϕρ χ ω

ρ ρ
  ∂ ∂ ∂= − − ∇ − − Γ   ∂ ∂ ∂  

∑

ONETWO and FASTRAN:
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GLF23 equations for rotation
[R. E. Waltz et al, Phys. Plasmas 4 (1997), 2482]

ΓΓΓΓ is the ion particle flux

- torque from TRANSP to be recalculated to rotation source

- χϕ � (dρ/dr)niηφ
eff

- modification of equations for momentum implemented in transport codes 
may be needed for simulations of the scenarios with time evolving ion 
density ni(t,ρ)
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� Input data for JET 72516 at 8 s: 

- Te, Ti, ne, Zeff, nD, q (or j);
- global parameters;
- torque and beam density are simulated by TRANSP

� Equilibrium: EFIT (CRONOS, JETTO), eqdsk (FASTRAN, ONETWO), 
3 moment (ASTRA)

� q-profile: calculated q using j(r) from TRANSP normalised to total 
current (ASTRA), eqdsk and TRANSP (FASTRAN), eqdsk (ONETWO, 
JETTO), TRANSP (CRONOS)

� Zero momentum losses

� Boundary condition at ρρρρ=1 is taken from measurements (ITPA DB 
input files)

� Transport model: χϕχϕχϕχϕ = χϕχϕχϕχϕ_GLF23 + 0.1 m2/s (0.1 m2/s is added to 
provide the non-zero diffusivity in the GLF23 stable region)

� ExB shear calculated by GLF23

� GLF23 settings are documented in Appendix 1

Simulation assumptions:
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- difference in q(r) is within 20%

- difference in magnetic shear between ONETWO and other codes in the core, 
ASTRA and other codes at the edge

ρ ρ

ASTRA/CRONOS/FASTRAN(dashed)/JETTO/ONETWO(solid)

Input data: q and magnetic shear
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ASTRA/CRONOS/JETTO/ONETWO(solid)

ρ ρ

Input data: metric coefficients
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ASTRA/CRONOS/FASTRAN(dashed)/JETTO/ONETWO(solid)

- Total ion density passed to GLF23 includes the thermal ions only (ASTRA, 
CRONOS, FASTRAN) and thermal + fast ions (JETTO and ONETWO)

-Te, Ti and ni profiles are very similar

Input data: ion density and 

temperature

ρ ρ
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Benchmarking cases 
(steady-state based on the measured 

profiles at 8 s)

� Case 1: χϕχϕχϕχϕ is computed using prescribed plasma 
profiles (ne, ni, Ti, Te, q, Zeff)

� Case 2: simulated Vϕϕϕϕ assuming zero particle flux 

� Case 3: same as case 2 but with prescribed 
radially dependent particle flux from TRANSP 

� Case 4: self-consistent ni & Vtor simulations
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ASTRA/CRONOS/FASTRAN(dashed)/JETTO/ONETWO(solid)

Case 1: computed momentum diffusivity 

with fixed profiles
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JETTO (red, jmsfer seq.201), ASTRA with different choice of numerical scheme control 
parameters (blue), CRONOS (green). Stationary profiles are shown.

Case 2: predicted toroidal velocity in 

ASTRA, CRONOS and JETTO

Torque profiles are very 

similar in three codes

JETTO run is performed with 

IDENGRAD=3, the difference in χϕ
computed with IDENGRAD=2 and 3 is 

small (page 20)
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Case 2: momentum diffusivity computed 

in ASTRA (blue), CRONOS (green) and 

JETTO (red)

χϕ_GLF23 + 0.1 m2/s

- χϕs are very different at the edge, 
different stability regions

- ASTRA: the choice of control 
parameters for fast numerical 
scheme affects the boundary of 
stable region, but not the unstable 
χϕ values
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Case 2 (reduced torque): predicted angular 

frequency in ASTRA, JETTO and FASTRAN

FASTRAN: black (initial), red (steady-sate)
JETTO (red, jmsfer seq.211), ASTRA

Vtor/R
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Case 2 (reduced torque): momentum 

diffusivity

χϕ_GLF23/FASTRAN 

(black – initial, red-steady-state)

JETTO and FASTRAN results are relatively close, ASTRA gives larger diffusivity

JETTO (red, jmsfer seq.211), ASTRA
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Case 1: comparison of GLF23 

computed χϕ and χi

JETTOASTRA
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� Benchmarking difficulties: different equilibrium, q profile, 
different GLF23 implementation in different codes (for 
example, the calculation of gradients)

� Comparison of computed χϕ with prescribed profiles:  χϕ
shapes are close, but not exactly the same

� Predictive modelling of toroidal velocity:

- relatively close Vtor in ASTRA&JETTO at high torque 
- good agreement between JETTO and FASTRAN at low torque, 

lower Vtor in ASTRA

� Fast numerical scheme for GLF23 (ASTRA): 

- χϕ does not depend on the control parameters in the ITG/TEM unstable 
region 
- the boundary between stable and unstable region is affected by the choice 
of control parameters leading to slightly different toroidal velocity

Summary:
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� Efforts for using the same equilibrium in all codes?

� Benchmarking of momentum equation with radially

constant χϕ? FASTRAN simulations with χϕ=0.1 
m2/s are available. 

� Benchmarking with χϕ = χi_GLF23?

� Should we move to Case 3 (non-zero MiVϕΓ)? 

� Modelling of rotation in HS (stationary flat-top 

phase)?

Discussion of further steps:
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nroot = 12  ! n. of roots in eigenvalue solver (12 impurity dynamics)
igrad = 0   ! 1 input gradients, 0 compute gradients
idengrad = 2   ! simple dilution, 2

itport_pt(1) = 1  ! 1 particle transport on, 0 off
itport_pt(2) = 1   ! 1 electron heat transport on, 0 off
itport_pt(3) = 1   ! 1 ion heat transport on, 0 off
itport_pt(4) = 1   ! 1/0/-1 v_phi transport on/off/use egamma_exp
itport_pt(5) = 0  ! 1/0/- v_theta transport on/off/use gamma_p_exp
irotstab = 1    ! 1 use internally computed wExB, 0 for prescribed
bt_flag = 1 ! 0 do not use effective B-field
alpha_e = 1.0   ! 1/0 ExB shear stabilization on/off
x_alpha = -1.0   ! 1/0/-1 alpha stabilization on/off/self-cons
ns_m(j-1) = 0.0 ! impurity density, 10^19 m^-3

shat_exp(j-1)   = SHEAR(j) !astra variable
alpha_exp(j-1)  = ALMHD !astra variable
gradrho_exp(j-1) = GRADRO(j) ! <|grad rho|>
gradrhosq_exp(j-1) = G11(j)/VRS(j) ! <|grad rho|**2>
angrotp_exp(j-1) = VTOR(j)/RTOR ! if itport_pt(4) = 0

egamma_exp(j-1)  = ROTSH*ROC/(CS+0.0001) ! prescribed ExB shear (cs/rho units), used 
if(itport_pt(4).eq.-1) only 
gamma_p_exp(j-1) = 0.0 ! par. velocity,shear rate, used if(itport_pt(4).eq.-1) only

vphi_m(j-1)      = VTOR(j) ! calculated if itport_pt(4)*itport_pt(5)=0

Appendix 1. GLF23 settings used for 
benchmarking
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Appendix II: sensitivity of GLF23 χϕ to q-

profile

black: reference

red: TRANSP q profile

blue : EFIT q profile

J.M.Park: FASTRAN 

computation of χϕGLF23
with different q-profile

R. E. Waltz et al, Phys. Plasmas 4 

(1997), 2482
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Case 1: JETTO runs with 

IDENGRAD=2 (solid) and 3 (dashed)

Rho

GLF23 computed χϕ, 
m2/s


