IOS/ITPA (16-19 April 2012) summary report: modelling

Irina Voitsekhovitch

Remote ISM meeting 25.04.2012

IOS/ITPA meeting:

- Reports on machine activities, modelling activity, status of the IOS tasks, discussions of the IAEA contributions, plans
- Emphasis on modelling of hybrid and steady state scenarios for ITER

Reports on modelling activity:

• **Modelling for existing machines and model validation:** *DIII-D, JET, JT60U, Cmod*

• ITER modelling:

- L and H-mode
- hybrid scenario
- steady state scenario
- Modules development / improvement
- IOS/ITPA modelling actions

Ramp up modelling of C-Mod discharge (C. Kessel)

- ICRF heated L-mode, 5.4 T (ITPA Profile Database)
- No model appears to consistently match the Te in C-Mod better than others
- The models are not grossly wrong, but inaccurate, missing profile details

Modelling of ITER demonstration discharges in DIII-D tokamak - H-mode (J. M. Park)

- Density (collisionality scan), ve*=0.1-0.6. Low density with ECH

- H98 ~1, but significant change in local thermal transport

- *Low ne (136345): ITG/TEM dominant, ExB shear is important.*

- High ne (136037): ETG dominant, weak effect of ExB shear

- Reduced plasma rotation at low ne (counter NBI) reduces confinement in baseline scenario (H98 changes by ~15%, but core χ e increases by factor ~2)

- Density peaking is less sensitive to collisionality than AUG or JET

- TGLF predicts inward particle flux

- Edge MHD: peeling-ballooning at high ne, peeling at low ne

Modelling of Steady State ITER demonstration discharges in DIII-D tokamak (J. M. Park)

 Electron and ion thermal diffusivities correlated mainly with magnetic shear both in the power balance analysis by TRANSP and in the TGLF modeling

JT-60U modelling with modified CDBM transport model (N. Hayashi)

Modified version :

$$\chi_{CDBM}^{\text{mod}} = C \frac{c^2}{\omega_{pe}^2} \frac{v_A}{qR} |\alpha_{th}|^{3/2} F(s,\alpha) G(\kappa),$$

 $F(s, \alpha)$ still uses total pressure

-Validation on H-mode plasmas: Ipl=1.8 MA, Btor=3.1 T

- Measured ne, <ne>=2.5e19 m-3 for 33654, 3.8e19 m-3 for 33655

- Prescribed q, q_axis=1 no MSE

- NBI heating from F3D-OFMC

- CDBM or GLF23 (with ExB shear stabilisation) plus neoclassical transport

- Te and Ti are simulated within ρ < 0.85

Validation of Off-axis NBCD Physics Using New Tilted Beam in DIII-D (J. M. Park)

- DIII-D neutral beam has been successfully modified for offaxis injection, providing H&CD for physics studies
- Beam emission, fast ion population and current drive are a consistent with off axis NBI
- The measure off-axis NBCD is very sensitive to B₁ direction
 - Dependency of the off-axis NBCD efficiency on the toroidal field direction is crucial to the optimum use of the off-axis beams not only for DIII-D but also for ITER
- The measured off-axis NBCD is consistent with the NUBEAM modeling without anomalous fast ion transport for a range plasma β and E_b/T_e
 - ITER is not likely to suffer from the loss of NBCD efficiency due additional transport from microturbulence

Blue: without NBCD

ITER baseline summary table

Team / codes	Anomalous transport model	H&CD	Scenario details	Results
C. Kessel et al/TSC	Coppi-Tang (H98~1), GLF23, Tped=4.7-5	33 MW NBI + 40 MW RF	15MA/100s, L-H at 100s, ne rise	Scan in nAr, ne ramp, flattop H98, feedbacks
F. Koechl & F4F G255/ CREATE- NL + JINTRAC	L-mode: BgBohm, H- mode: GLF23 + cont. ELM with prescribed α_c	33 MW NBI + 20 MW ICRH + 20 MW ECRH (central)	dlpl/dt=0.3MA/s at 0.25nGr, 0.65nGr during the lpl flattop	 -15MA, zero Vloop ramp-down for 15 -> 5M - 17MA, zero Vloop ramp-down for 17 -> 5 MA - 17 MA, zero Vloop ramp-down for 13 -> 5 MA with slower dlpl/dt at higher current
R. Budny / PTRANSP	GLF23, χφ=0.5χi_GLF23 & χφ=χφ_GLF23	50-73 MW		L-mode, scan in pedestal pressure (H-mode), inward/outward pinch for He ash, heat mix. P α range: 7 – 120 MW
N. Hayashi et al / TOPICS-IB	CDBM mod., Tped=2.2 keV	33 MW NBI + 7 MW ICRH	15 MA, L-H at lpl flattop, ne(0)= 1.1e20 m ⁻³ , ITB, H-L at 8 MA	Comparison of old and new CDBM: Q ~ 10.4 -> 14.5, βN ~ 1.69 -> 2.12, H _H ~ 1.03 -> 1.14
A. Polevoi et al / JETTO, ASTRA, TOPICS-IB	SBM, GLF23, Weiland, MMM	33 MW NBI + 20 MW ECCD (EL)	10-15 MA, (5- 12)e19 m ⁻³ , fixed nTped ~30 keV*10 ¹⁹ m ⁻³	Density and IpI scan with different transport models

ITER hybrid summary table

Team / codes	Anomalous transport model	H&CD	Scenario details	Results
S.H.Kim et al / CORSICA	Coppi-Tang, parametrised EPED1	Up to 53 MW		Scan in dlpl/dt, flat-top lpl, flat- top ne, plasma confinement, ne ramp-up scenario. VDE
K. Besseghir et al/ DINA-CH &CRONOS	??	NBI (33MW) + ICRH (20MW) + ECRH (20MW)	0.4MA→12.2 MA→0.9MA, Q~8, q~1 for 1000 s	 Scenario within the PF limits on forces, fields, currents, voltages -L-H and H-L transition with no wall contact Scenario evolved similarly to the prescribed-boundary one (small variations in H&CD timing & ECRH mirror angles
N. Hayashi et al / TOPICS-IB	CDBM mod., Tped=5.8 keV	NBI 33 MW, ICRH 20 MW, ECRH 20 MW	12.5 MA, ne(0) = 0.85e20m3	Comparison of old and new CDBM: Q ~ 4.83 \rightarrow 5.6, β N ~ 2.12 \rightarrow 2.38

ITER steady state summary table

Team/code	Anomalous transport model	H&CD	Scenario details	Results
S.H.Kim et al / CORSICA	Coppi-Tang x 0.7 to get H98~1.6, ITB not modelled, parameterised EPED1	56.5 MW: NBI (16.5 off-axis) + EC (20) + LH (20)	9 MA in 60s, 3000s, 0.85nGr, 210 s of IpI ramp down	Estimation of flux consumptions, coil currents. Fully NI operation with Q > 5
F. Poli, C. Kessel / TSC + ideal MHD stability (M3D, PEST2)	Coppi-Tang or prescribed χ to produce ITB & scale to H98~1.6, CDBM. Tped=3.3-3.7 keV	73 MW: EC(20)+IC(20)+NBI(33) EC(20)+LH(20)+NBI(33) 93 MW: EC(40)+IC(20)+NBI(33) LH(40)+IC(20)+NBI(33) 68MW: LH(40)+IC(20)+NBI(8)	7-10 MA, 100% NI, bootstrap 40-70%, Prad 25-35 MW	Ideal MHD for various nGr, pressure peaking, heating scenarios
K. Besseghir et al /DINA- CH&CRONOS	CRONOS for heat transport	NBI (33MW) + ICRH (20MW) + ECRH (20MW) + LHCD (15MW)	0.4MA→10MA →0.6MA, Q~5	 Scenario within the PF limits on forces, fields, currents, voltages -L-H and H-L transition with no wall contact
V. Leonov et al / ASTRA+ ZIMPUR	Scaling-based	Feedback for NBI (~30→50MW) and LHCD(~20→40MW)	9 MA, ne=7.e19, Pfus~350 MW	Control of ne (via fuelling), Pfus (PNBI), Vloop=0 (PLH), Ploss (Ar seeding), nHe (He pump)

Steady State exploration: H&CD requirements for MHD stability and ITB formation (F. Poli and C. Kessel, IOS/ITPA, 16-19 April 2012)

With LH heating => most likely q_{min} >2 => $\beta_N \ge 4I_i$ with ideal wall stabilization

Development of ITER scenarios for pre-DT operations (T. Casper)

Needed: input on He experiments on JET, ITER simulations to compare with CORSICA

Modules development/improvement: improved multistep ionization of NNB ions in ITER (R. Budny)

ITER: H plasmas

- Beam neutrals can get excited without being ionized
- Ionizations from excited states increase beam deposition and reduce the shine-through power
- Approximate models have been used to predict this effect

New, consistent excited state model in NUBEAM

- New module ADAS310_FORTRAN_DRIVER in NUBEAM and TRANSP (Marina Gorelenkova)
 - Use ADAS (Atomic Data and Analysis Structure)
 - Module based on ADAS310 library
 - Atomic physics data for an effective ionization and charge-exchange coefficients of H/D/T beam atoms in an impure plasma
 - Bundle-n approximation for levels above Z = 10

Collisionality dependence of a shielding factor of a beam driven current (M. Honda et al)

0.6

0.5

0

0.1

- NBCD calculation sometime overestimate driven current

- Two shielding factor models covering all collisionality regimes have been developed using matrix inversion (MI)

- L_{31} coefficient [Sauter PoP1999] is equivalent to shielding factor Γ : fitted formulae for the collisionality dependent L_{31} can be used for Γ

JT-60SA LSN SS 2.3MA 0.6 0.2 0.4 0.8 1 10 MI-S Lin-Liu MI-S analytic 0.9 - Sauter 1 0.8 ۷._e 0.7 0.1

0.2

ε

0.01

0.3

Action list (Hybrid and SS) Modelling

Review of action list of 1 year goals:

• Pedestal consistent with EPED1. EPED1 parameterization for ITER shape and $\frac{1}{2}$ + full TF : All scenarios

• More routine (ideal) MHD stability calculations: SS

• Particle transport: document that the density peaking (particle transport) is important, *particle source, particle transport*

• Data from experiments: s and q dependence, data from ITB scenarios from JT-60U and EU-JP selected discharges

- Kukushkin's SOL/DIV parameters to include in codes
- Review SS scenario simulations

Action list for JA's

For the next meeting (15-19 October 2012, San Diego)

- Modelling of He target plasmas for NBI
- Old Hybrid benchmark: compare p_{fast}, rotation and plasma equilibrium
- Long pulse 10-15MA: to get to some closure and publication strategy

In the next 6-12 months:

- •IOS-JA8: Burn control simulation
- •IOS-JA9: Optimisation of Operational Space for Long pulse Scenarios
- •IOS-JA2: ITER ramp down simulations

Longer term activities (report when required or when progress is made)

- •IOS-JA1: Modelling ITER-like discharges in DIII-D, JET, AUG, C-Mod
- •IOS-JA5: Ramp up of ITER Hybrid and Steady State scenarios
- •IOS-JA7: Steady State exploration
- •IOS-JA10: Scenario modelling for low- and non-activation operation of ITER