Transport and Confinement in JT-60SA

<u>E. Barbato¹</u>, C. Angioni², L.Garzotti³, G. Giruzzi⁴, X. Litaudon⁴, M. Romanelli³, M.Yoshida⁵, K. Tanaka⁶, N. Hayashi⁵, Y. Kamada⁵, JT-60SA Research Plan Contributors and the JT-60SA Team

 ¹ Associazione EURATOM ENEA sulla Fusione, CP 65-00044-Frascati, Rome, Italy
²Max Planck Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2 85748 Garching, Germany
³ EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom
⁴ CEA, IRFM, F-13108 St Paul Lez Durance, France

⁵ Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193, Japan ⁶National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan

Main objectives and confinement issues

- JT-60SA is an Advanced Tokamak: therefore one of the main objective is to study the mutual interaction amongst plasma pressure, rotation and current profiles in high β, highly selfregulating, plasmas.
- The other is to achieve *high confinement regimes at high-density, above the Greenwald density.*
 - This is another important issue, typical of AT and the way to it is through the control of the plasma profiles, plasma shape and particle fueling

High β -high confinement in self-regulating plasmas at high density.

Fig.5-1 The bootstrap current fraction (f_{BS}) against the normalized beta (β_N) . Linkage between plasma pressure, rotation and current profiles in highly self-organized plasmas is clarified taking advantage of high β_N and high f_{BS} (DEMO [1], JT-60U [2, 3], JET [5]).

Fig. 5-2 Target regime in HH factor and the Greenwald Density fraction (n_e/n_{GW}) . (DEMO [1], JT-60U [4], JET [5]).

Other T&C important issues

- Studies of the energy and particle and momentum confinement scaling,
 - both on hybrid and high β scenarios, at high plasma shaping
 - and in dominant electron heating condition
- Turbulence stabilization
 - stabilization of the ITG turbulence through alpha optimization in the presence of a large population of fast ions due to NBI ^[5]
 - JT6-60SA can operate at different Ti/Te ratios, thus contributing to investigate the role of the heating ratio, of Ti/Te and of collisionality on density peaking and TEM stabilization ^[4].

T_i/T_e variations

- The ratio of the electron heating power to the total input power can be varied from ~20% to ~70% with low external fuelling and torque input by NNBI and ECRF
- Transport dependence on Ti/Te ratio will be investigated by varying both the ratio of electron heating power and the electron density.

Fig. 5-5 Ratio of electron heating power to total input power versus total injection power.

Predicted T_i/T_e variations (METIS^[3])

• Ti/Te variations as they result from a density scan at fixed power and from an ECRH power scan at a fixed density.

A large region of dimensionless parameters space.

By virtue of its auxiliary heating systems JT-60SA allows to carry out transport experiments covering a wide region of the dimensionless plasma parameters space and will access, although not simultaneously, the ITER and DEMO relevant values of v^* , ρ_p^* and β_N with ITER- and DEMO-like plasma shapes.

First predictive (100s) transport simulations of scenario 2 (H-mode)by Bgb empirical models ^[7,8,9]

- By JINTRAC: three field simulations (n_e, T_e and T_i) with pellets source to control plasma density
 - Pellets are injected from the LFS at a velocity of 300 m/sec
 - A feedback mechanism on pellet injection controls the volume-average density $\langle n_e \rangle$.
- By ASTRA: two field simulations (T_e and T_i) (100ms)

JINTRAC density and temperature profiles at different α_c

Te(KeV)

10

 $- \alpha_{c} = 1.7$

q-profile evolution similar for the three cases.

ASTRA results by BgB shear dependent model (and different pedestal width and height)

1.5D calculations : summary & conclusions

	ASTRA(1&2)	JINTRAC	JINTRAC	JINTRAC
		(α _c =1.3)	(α_{c} =1.5)	(α_{c} =1.7)
F _{pellet} (Hz)		16.7	16.3	15.3
$n_{e}(10^{20}m^{-3})$	0.62			
<t<sub>e>(KeV)</t<sub>	5.1	5.8	6.3	6.6
<t<sub>i>(KeV)</t<sub>	4.7	5.8	6.2	6.5
F _{BS}	0.22			
Н	1.1	1.15	1.25	1.30
W(MJ)	19	22.5	24.0	25.5

- Full predictive (100s) transport calculations have been performed for JT-60SA scenario 2 by JINTRAC and ASTRA.
- Density control by pellet injection has been shown with a resulting injection frequency between 15-17 Hz
- An H factor of 1.3 is obtained when the pressure ballooning limit is set at ac=1.7
- In all cases an H factor larger then 1 is obtained