

Density simulation in JET HS

L. Garzotti, C. Bourdelle, J. Citrin, F. Köchl, J. Lönnroth, S. Moradi, V. Parail, I. Voitsekhovitch, P. Belo, J. Bizarro, G. Corrigan, the EU-ITM ITER Scenario Modelling group and EFDA-JET contributors*

Simulations

- > **JETTO** fully predictive (ne,Ti,Te, but no rotation).
- Bohm/gyro-Bohm transport model.
- Particle and energy sources taken from experiment (in particular particle beam source cross checked between PENCIL and NUBEAM and good agreement found).
- Four discharges analysed high/low power (18/10 MW), high low triangularity:
 - 77922 high power, high delta
 - 75225 high power, low delta
 - 75590 low power, high delta
 - 74641 low power, high delta

> Strategy:

- match plasma parameters at top ETB (adjust χ and D inside ETB)
- match evolution of average density (adjust R)
- tune D in the core (if necessary) to match density peaking

Second ISM working session: 21-25 May, Vienna, Austrian Academy of Sciences, L. Garzotti

Summary of results

Shot	Time (s)	$\gamma_{\mathbf{Exp}}$	$\gamma_{\rm Sim}$	S(0)	χ/D (ETB)
77922	7.5-8.0	1.36	1.40	2.0	5.0
75225	6.0-6.5	1.59	1.58	1.5	7.5
75590	5.8-6.3	1.42	1.45	1.0	15.0
74641	6.0-6.5	1.52	1.51	1.0	15.0

Second ISM working session: 21-25 May, Vienna, Austrian Academy of Sciences, L. Garzotti

Summary

High power shots exhibit core particle higher core particle diffusivity (factor 1.5, 2) with respect to standard Bohm/gyro-Bohm transport model.

Task Force

INTEGRATED TOKAMAK MODELLING

- > Low power shot exhibit higher χ /D inside ETB with respect to high power shots.
- In no cases an inward particle pinch had to be invoked to explain the observed level of density peaking.
- Friangularity does not seem to be playing a major role (density pedestal height?).
- GLF23 simulations (see Irina's paper) also predict density overpeaking. Agreement recovered if ExB stabilisation term is reduced).
- QuaLiKiZ analysis of fluxes not conclusive (no clear prediction that an outward particle pinch, which would explain the extra flattening of the density profile, should exist).
- Sara Moradi's analysis with GYRO could shed some light to be done at the beginning of June and possibly incorporated in the paper.