

Status of scenario studies for WEST

www.cea.fr

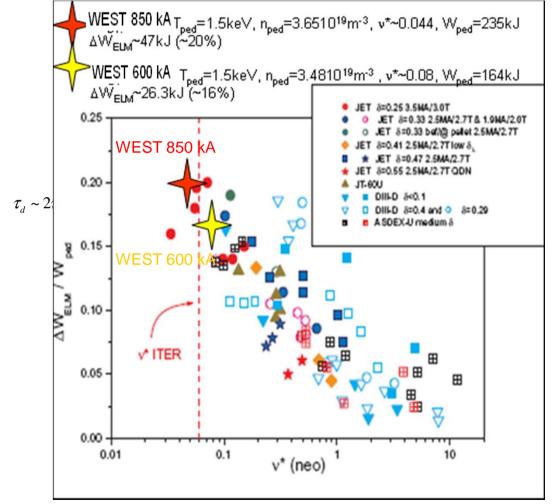
F. Imbeaux, J. Garcia, V. Basiuk, M.Bécoulet, J. Bucalossi, G. Huysmans, F.Orain

24 October 2012

- Objective: test ITER key in-vessel component technology prior its installation on ITER: tungsten monoblock divertor
 - Test in most realistic conditions the technology foreseen for ITER: ELMs cycles over long durations
- Means:
 - Adapt Tore Supra to X-point configuration
 - Replace present Carbon limiter by Tungsten divertor
- Advantage: Tore Supra is already equipped with stead-state technologies, so the investment is relatively moderate (~ 20 million euros for the Tore Supra adaptation)
 - Supra-conducting TF coils
 - LHCD to provide long pulses
 - Active cooling of the PFC

- WEST shall demonstrate long pulse divertor operation with large number of ELM cycles under stationary conditions
 - Access to H-mode and pedestal characteristics
 - Operational window and development of ~ 1 minute long, robust scenarios
- As a by-product, investigation of advanced non-inductive scenarios with far off-axis LH current drive
- Up to now, the scenario studies have been relatively basic and not extensive, the core of the WEST project focuses on a technological objective
 - What you will see today was essentially supporting the feasability phase of the project (2010 – 2011)
 - Now the WEST project is started and needs deeper preparation via Integrated Modelling

Easy accessibility to H-mode at B_T =3.85T (even at high density ne/nGR~0.9) and B_T =2T with 6MW LHCD, 9MW ICRH.


L/H transition threshold: $P_{L/H} = 0.042 \ n_{20}^{0.73} \ B_t^{0.74} \ S^{0.98} \ (MW)$ (1) $P_{L/H} = 0.072 \ n_{20}^{0.7} \ B_t^{0.7} \ S^{0.9} \ (Z_{eff}/2)^{0.7} \ F(A)^{0.5},$ (2) $F(A) = 0.1 \ A/f(A), \ f(A) = 1 - [2/(1+A)]^{0.5}$ ["Progress in ITER Physics basis", Nuclear Fusion 47 (2007)] $P_{L/H} = 0.0488 \ e^{\pm} 0.057 \ n_{e20}^{0.717 \pm 0.035} \ B_T^{0.803 \pm 0.032} \ S^{0.941 \pm 0.019}$ (3) $P_{L/H} = 2.15 \ e^{\pm} 0.107 \ n_{e20}^{0.782 \pm 0.037} \ B_T^{0.772 \pm 0.031} \ a^{0.975 \pm 0.08} \ R^{0.999 \pm 0.101}$ (4) [Y R Martin 11th IAEA TM on H-mode J.of Physics 123 (2008)]

<i>B</i> _t (T)	<i>n</i> _e (10 ¹⁹ m ⁻³)	(1)	(2)	(3)	(4)			
	n _e (10 ¹⁹ m ⁻³) (n _e /n _{GW})	P _{L/H} (MW)						
3.85	4 (0.45)	3.3	4.2	3.6	4			
3.85	8 (0.9)	5.4	6.8	5.9	6.8			
2	2 (0.45)	1.2	1.6	1.3	1.4			
2	4 (0.9)	2	2.7 Status of V	2.1 WEST Scenarios 2	2.4 4 OCTOBER 2012	PAGE 4		

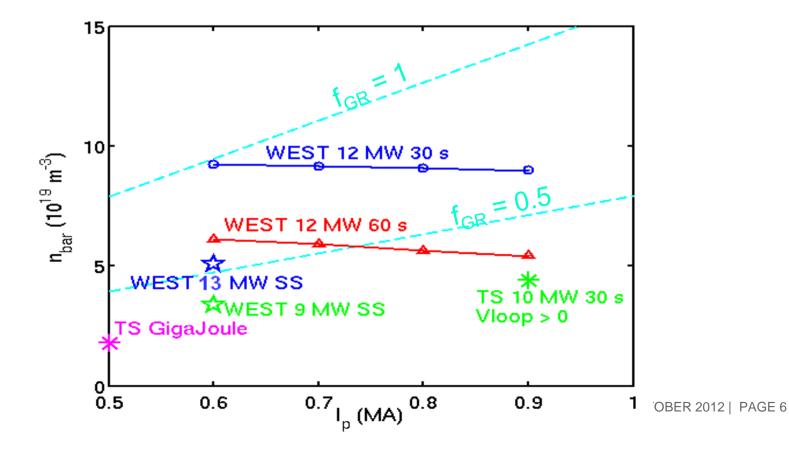
WEST pedestal will operate at ITER collisionality Type I ELM size $\Delta W_{ELM} \sim 47$ kJ ($v^* \sim 0.044$).

 V_{pl} =13.4-11.5m⁻³, T_{ped} =1.5keV, n_{ped} =3.65-3.4810¹⁹m⁻³, q_{95} =2.95-4, R=2.53-2.58m

Large proportion of ΔW_{ELM} arrives after $\tau_{//ion}$ (JET,AUG).

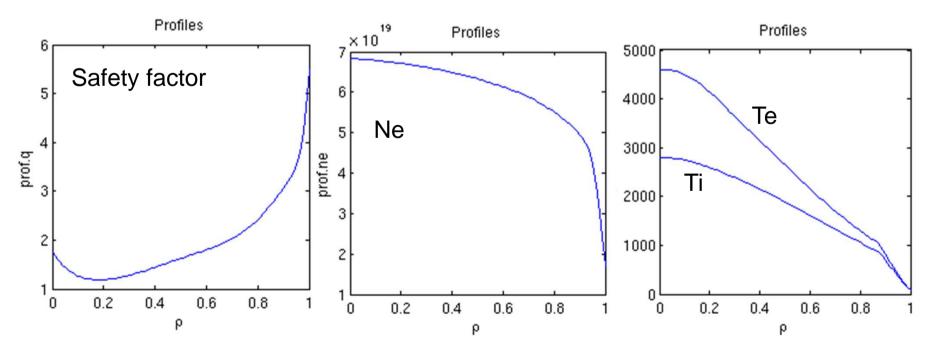
Deposition time for TSDT:

 $\tau_d \sim 2\tau_{||} \sim 0.4ms$


In/out asymmetry: 2:1 energy to inner divertor: ~31.3kJ and ~15.7kJ to outer for ΔW_{ELM} ~47 kJ (v*~0.044).

Status of WEST Scenarios | 24 OCTOBER 2012 | PAGE 5

Operational window for long pulses


- Routine operation of 30 s actively cooled Tungsten divertor at high Greenwald fraction, with 6 MW ICRH + 6 MW LHCD
- Conservative assumptions : H₉₈ = 1, η_{LHCD} value from low Ip, low Te fully non-inductive L-mode plasmas (METIS hybrid 0D/1D modelling)
- In addition : fully steady-state operation at Ip = 600 kA, f_{Gr} = 0.35, 9 MW

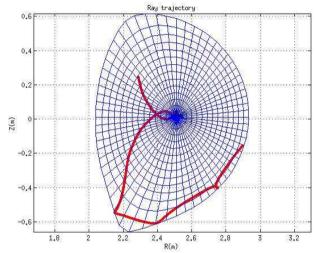
Nominal scenario for long pulses

- CRONOS simulation
- Ip = 600 kA, of which I_{LHCD} = 260 kA (43 %), I_{Non-Inductive} = 430 kA (71 %)
- Nbar = 6.10¹⁹ m⁻³, prescribed profile
- P_{ICRH} = 6 MW, P_{LHCD} = 3 MW (C3PO/LUKE obtains η_{LH} = 1.25 10¹⁹ A/W/m²)
- Plateau duration: 138 s for 7 Wb assumed in the plateau
- Fixed pedestal height, core transport normalized to H₉₈ = 1
- Stationary profiles:

More scenario studies ...

- 4 scenarios simulated with CRONOS (2 values of lp x 2 values of density)
- Conservative assumptions on energy confinement: H₉₈ = 1 by adjusting Tped, Bohm/gyro-Bohm model predicts Te, Ti in plasma core – potential ITBs not modeled
- 9 MW ICRH, up to 6 MW of LHCD power (C3PO/LUKE)
- The first three scenarios feature far off-axis LHCD deposition (r = 0.6 0.8) but the q-profile reversal is only local and transient. NB pessimistic « no ITB » assumption
- Scenario 4 is quite interesting since features mid-radius LH deposition and steady-state q-profile reversal at 100 % non-inductive current drive

Scenario	Ip (kA)	\mathbf{f}_{G}	q ₉₅	\mathbf{f}_{NI}	$\mathbf{f}_{_{bootstrap}}$	$ ho_{ ext{LHdep}}$	T _{ped} (keV)	H ₉₈
1	850	0.55	2.95	0.7	0.35	0.65	1.3	0.95
2	850	0.40	2.95	0.9	0.3	0.8	1.6	0.96
3	600	0.75	4.05	0.66	0.4	0.65	0.9	1.0
4	600	0.55	4.05	1	0.4	0.55	1.2	1.0


Steady-state scenario



q-profile and LH deposition as in ITER SS scenario

- LHCD @ mid-radius
- Steady-state wide q-profile reversal
- P_{ICRH} = 9 MW (sensitivity: a minimum of 6 MW is required)
- $P_{LH} = 3.7 MW \rightarrow margin remains on P_{LH}$
- 85 % electron heating; $\eta_{LH} = 1.1 \ 10^{19} \ \text{\AA/W/m^2}$
- 100% non-inductive, 40 % bootstrap and 60 % LHCD; $\beta_{\rm N} \sim 1.7$; $\beta_{\rm P} \sim 3$; $\rho^* = 4.10^{-3}$
- Very similar **q-profile** and LH deposition as foreseen for ITER steady-state scenario

Typical ray rajectory (only 1 ray shown)

Summary

- Access to Type I Elmy H mode is expected with significant margins
 - Taking a margin of 30 % above the most pessimistic LH threshold scaling expression, at high density and magnetic field yields 9 MW for Type I Elmy H mode access, to be compared with 15 MW coupled
 - v^* pedestal as in ITER, ρ^* core = 4.10⁻³
- → guarantees the main WEST scientific target: Tungsten Divertor operating in ELMy H mode over long durations (30 60 s)
- In addition, WEST can address steady-state tokamak scenario issues with Tungsten Divertor operation
 - Steady-state wide q-profile reversal, similar to foreseen ITER steadystate scenario
 - Far off-axis LHCD in Type I Elmy H mode with ITER relevant technology
 - Impurity behaviour with dominant electron heating (interesting to check on long time scales !)
 - ITB compatibility with Type I Elmy H mode in Tungsten environment

Perspectives for further Integrated Scenario Modeling t

- Tungsten transport and accumulation in H-mode over long durations
 - Source from the edge / pedestal
 - Transport in the plasma core
 - Model for radiative power
- More exploration of advanced scenarios
 - High power, high bootstrap fraction
 - Control q-profile over long duration
- Explore scenarios with less injected power (margins)
- Vary pedestal assumptions
- The presented studies have been made in the "pre-project" phases of WEST
- The WEST project is being launched, in an international context. Modelling is part of the scientific programme preparation.
- **ISM** members are welcome to participate