

Role of impurities in ITER-like ramp-up in JET

G.M.D. Hogeweij¹, G. Calabrò², A.C.C. Sips³, I. Voitsekhovitch⁴, JET-EFDA contributors & ITM-TF ITER Scenario Modelling group

 ¹ FOM Institute DIFFER, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein, The Netherlands, www.differ.nl
 ² Associazione Euratom-ENEA, Frascati, Italy
 ³ EFDA CSU Culham, Culham Science Centre, Abingdon OX14 3DB, UK
 ⁴ EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, UK

Motivation: with ILW in JET some discharges develop strong core ratiation

Example pulse 82005:

P_{rad} (suddenly) increases (10.5s)
(P_{rad} remains below P_{tot})
Observations:

- Temperature profile hollow; Sawteeth disappear
- Strong density peaking
- Although n_e and T_e stabilize, I_i and q keep changing
- n=1,n=2 MHD activity

 \rightarrow mode locking \rightarrow disruption

Question: what W concentration can the plasma "survive"

in JET-ILW as template for ITER

Here we concentrate on the

current ramp-up phase 10 april 2(Which is most vulnerable) 2

Outline

What radiation can we expect

- Identify 2 pairs of similar ramp-ups, one with C-wall and one with ILW one pair ohmic, one pair with few MW of ICRH
- Note on modelling of q profile evolution during ramp up need peaked Z_{eff} profile to get correct q profile evolution

➢ Effect of replacing C⁶⁺ → Be⁴⁺ → Be⁴⁺ + small conc. of W for ohmic ramp-up:
✓ interpretative: effect on q profile evolution and radiation (using exp. n_e, T_{e,i}, Z_{eff})
✓ predictive: effect on T_e & q profile evolution and radiation (using exp. n_e, T_i, Z_{eff})

Same exercise for ohmic ITER ohmic ramp-up

What next:

- Compare with q profile evolution and radiation in similar ILW ramp-up
- Repeat modelling for JET discharge with ICRF heated ramp-up
- H-mode transition during ramp-up

What radiation to expect from C, Be and W?

Radiation as function of T_e (assuming corona equilibrium) Note W conc. 10^3 times lower than C, Be W radiation peak at 1 keV

Identity pairs

Ohmic identity pair: ✓ same dI_p/dt: 0.28MA/s ✓ similar n_e C: 72723 (2.4T/2.6MA), ILW: 83223 (2.4T/2.5MA)

- Identity pair with ICRH heating:
- C: 72507

ILW: 83449 (lower ICRH power, different wave form)

q profile evolution # 72723 get evolution right with peaked Zeff

Interpretative CRONOS runs:
Start at 41.5 s with exp. Te, ne etc.
Use exp data, calculate q profile evolution
Use exp Zeff, assuming flat or peaked profile (the latter taken from Irina's TRANSP runs)

Correct q profile evolution: NOT q(0) = 1 at time of first ST, BUT q(0) < 1 and $q(\rho_{inv}) = 1$ at first ST crash

q profile evolution # 72723 get evolution right with peaked Zeff

Correct q profile evolution: NOT q(0) = 1 at time of first ST, BUT q(0) < 1 and $q(\rho_{inv}) = 1$ at first ST crash

Infer dimensionless inversion radius from fast ECE diagnostic (KK3): $\rho_{inv} \sim 0.075$ at first ST Looking at CRONOS q profile: ρ_{inv} is too large @ 45.3s, correct @ 44.7 s So evolution is "only" 0.6 s too fast

With moderately peaked Z_{eff} profile q profile evolution is "on time" *(see plot)*

Note: in the rest of the presentation we do not bother about too fast q evolution, we simply assume flat Z_{eff} profile

Interpretative 72723 Replacing C⁶⁺ \rightarrow Be⁴⁺ and adding traces of W

Blue: only impurity is C⁶⁺, Z_{eff} as measured Green: C⁶⁺ replaced by same concentration Be⁴⁺ (hence with lower Z_{eff}) Red: same Be⁴⁺, added W, n_W/n_e = 10⁻⁵ Cyan: same Be⁴⁺, added W, n_W/n_e = 2 10⁻⁵ Magenta: same Be⁴⁺, added W, n_W/n_e = 10⁻⁴ Black dashed line in 2nd frame: n_C/n_e (=nB_{Be}/n_e)

Notes:

➢ Flat Z_{eff} assumed

These are interpretative runs, i.e. T_e taken from data – unrealistic when strong radiation present

Addition of 10⁻⁵ W brings Z_{eff} more or less back is to original level (2nd panel)

> With 10^{-4} W the radiation loss nearly equals ohmic input power at end of ramp-up(4th panel)

Tiny effect on q profile evolution (5th panel)

Interpretative 72723 (ctd) Replacing C⁶⁺ \rightarrow Be⁴⁺ and adding traces of W

Notes:

- > Initial off-axis peak in j and thus in p_{ohm} (due to off-axis peaked Te)
- Effect of addition of 10⁻⁴ W on power balance becomes strong towards end of RU
- Effect on q profile evolution only in very early phase

Predictive modelling JET ramp-up

Notes:

- Start from experimental profiles at 41.s (i.e. 1.5 s after brak-down)
- \succ Use experimental n_e and Z_{eff}
- ➢ Assume flat Z_{eff}
- > Calculate self-consistently evolution of T_e , T_i and q

 In the past 2 models were successful in predicting the evolution durint ramp-up:
 ➢ Empirical scaling model, using either L- or H-mode scaling law, with correction factor 0.6 / 0.4 for L / H scaling (both equally good, use H-mode scaling here)
 ➢ Semi-empirical Bohm-gyroBohm model [original, L-mode form]

Both will be used in the following

Note: first-principle model like GLF23 does not work well in L-mode ramp-up phase

Dick Hogeweij

Predictive 72723 – scaling model Replacing C⁶⁺ \rightarrow Be⁴⁺ and adding traces of W

Same colour coding as previous plots

Notes:

> Addition of W with n_W / n_e up to 2 10⁻⁵ does not have strong effect on evolution of T_e and q (5th panel)

➤ With $n_W / n_e = 10^{-4}$ Prad / Pohm increases to nearly 1 (4th panel), and the evolution of T_e and q becomes totally different (5th panel)

Predictive 72723 – scaling model (ctd) Replacing C⁶⁺ \rightarrow Be⁴⁺ and adding traces of W

Notes:

> Initial off-axis peak in j and thus in p_{ohm} (due to off-axis peaked T_e)

> Add W with n_w / n_e up to 2 10⁻⁵ \rightarrow no strong effect on evolution of T_e and q

> $n_w/n_e = 10^{-4} \rightarrow T_e \& q$ evolution totally different, hollow T_e , flat q (plasma just survives) Weird results at high W conc. due to peculiarity of scaling model \rightarrow Bohm-gyroBohm better!

Predictive 72723 – Bohm-gyroBohm model Replacing C⁶⁺ \rightarrow Be⁴⁺ and adding traces of W

Same colour coding as previous plots, PLUS: Pale green : same Be⁴⁺, added W, $n_W/n_e = 2 \ 10^{-4}$ Black: same Be⁴⁺, added W, $n_W/n_e = 4 \ 10^{-4}$

Notes:

> Addition of W with n_W / n_e up to 10⁻⁴ does not have strong effect on evolution of Te and q (5th panel)

> With $n_W / n_e >= 2 \ 10^{-4}$ the evolution of Te and q becomes totally different (5th panel)

Predictive runs – Bohm-gyroBohm model (ctd) Replacing $C^{6+} \rightarrow Be^{4+}$ and adding traces of W

Notes:

Same colour coding as previous plots; exp T_e = dotted black curve in upper panel

- > Initial off-axis peak in j and thus in p_{ohm} (due to off-axis peaked T_e)
- > n_W / n_e up to 2 10⁻⁵ → no strong effect on evolution of T_e and q
- > $n_W/n_e = 1-2 \ 10^{-4} \rightarrow T_e \& q$ evolution modified in RU (46s), but restores in flat-top (50s)
- > $n_{W}/n_{every} = 4 \ 10^{-4} \rightarrow$ plasma cannot cross radiation barrier, profiles totally spoiled

ITER Predictive runs – Bohm-gyroBohm model Replacing C⁶⁺ \rightarrow Be⁴⁺ and adding traces of W

Ohmic simulations;

 Flat Zeff assumed, as given by ITER team (i.e. Z_{eff} decreasing with increasing density);
 Bohm-gyro model used, original L-mode version

Blue: only impurity is Be4+, Green: same Be4+, added W, nW/ne = 10^{-5} Red: same Be4+, added W, nW/ne = $2 \ 10^{-5}$ Cyan: same Be4+, added W, nW/ne = $5 \ 10^{-5}$ Magenta: same Be4+, added W, nW/ne = 10^{-4} Black dashed line in 2^{nd} frame: nB_e/n_e Black dashed line in last frame: line averaged n_e

Notes:

> Addition of W with $n_W / n_e \le 2 \ 10^{-5}$ does not have strong effect on evolution of Te and q

> With $n_W / n_e = 10^{-4}$ the radiation loss approaches the ohmic input power, and the evolution of Te and q are more affected

ITER Predictive runs – Bohm-gyroBohm (ctd) Replacing $C^{6+} \rightarrow Be^{4+}$ and adding traces of W

Same colour coding as previous plots

Notes:

One sees W radiation peak shift outward as Te increases

> With $n_W / n_e = 10^{-4}$ the Te profile develops a 0 region outside $\rho \sim 0.7$, thus inducing strong peaking of current density

Conclusions & Outlook

Conclusions for JET:

- For an ohmic ramp-up at moderate density, assuming flat Z_{eff} and uniform n_W / n_e the critical W concentration is n_W / n_e is ~10⁻⁴
- Above this W concentration, the plasma cannot cross the radiation barrier, thus staying at a flat/hollow T_e profile below 1 keV

Conclusions for ITER:

- For an ohmic ramp-up at moderate density, assuming flat Z_{eff} and uniform n_W / n_e the critical W concentration is n_W / n_e is ~10⁻⁴
- > Above this W concentration, the T_e profile develops a 0 region outside $\rho \sim 0.7$, thus inducing strong peaking of current density

Conclusions & Outlook

Further work for **JET**:

- Same exercise for pulse with ICRF in RU: what W concentration is acceptable?
- Look at pulses with ILW: what was measured radiation level, what can one conclude about W concentration and profile (is n_w more peaked than n_e?)

Further work for ITER:

Problems can be mitigated by applying ECRH from early in RU – what W concentration would then be acceptable? (some results on this will be added to presentation next week at ITPA-IOS)

Comments from JET TF meeting Tue 9.4

Z_{eff} in the simulations was too high because W was taken with charge 74 instead of the real charge ~30

I cannot redo all simulations on short notice, but I will make a note on this

- the effect on the evolution will be small, the main effect is the radiation

For ITER also control of I_i is crucial, maybe even more than radiation collapse itself I will add I_i time traces to the ITER simulations

Following previous comment: also MHD stability is an issue:
 If the plasma size is effectively reduced to e.g. 0.7, then what matters is not q(ρ=1) but q(ρ=0.7), and fatal MHD will happen when this value reaches 2.
 I will add a note on that, and could show time trace of e.g. q(T_e=50 eV)

When W concentration rises, also high flux consumption will be an issue for ITER I will add time traces of flux consumption to the ITER simulations

Regarding JET 72723 modelling: it is likely that W concentration is low before X point formation and strongly rises after X point formation *Correct, to be taken into account later on*