C EFDA

EUROPEAN FUSION DEVELOPMENT AGREEMENT

Task Force INTEGRATED TOKAMAK MODELLING

EPS 2013 Poster Presentation

Modelling of JET hybrid scenarios with the European Transport Solver

A.C.A. Figueiredo, I. Voitsekhovitch, V. Basiuk, J. Ferreira, Ph. Huynh, I. Ivanova-Stanik, D. Kalupin, O. Sauter, P. Belo, D. Coster, T. Johnson, F. Koechl, B. Scott, R. Stankiewicz, P. Strand, JET EFDA contributors and ITM-TF contributors

ISM Remote Meeting, 26 June 2013

Introduction

- ★ The ETS is a core transport code developed within the ITM
- ★ 1 ½ D workflows based on the ETS are available that can simulate a tokamak experiment
- The ETS workflow used in these simulations has recently been benchmarked against other codes (D. Kalupin NF paper in discussion)
- Here, the goal is to validate ETS modules, particularly H-mode
 Bohm/gyro-Bohm (BgB) and NCLASS in different plasma conditions
- Simulations are for densities, temperatures, current diffusion and carbon content in JET hybrid scenarios

Experimental Scenarios

- Integrated modelling done for two different JET hybrid pulses in their stationary phases
- ★ Both plasmas have a similar high-triangularity up-down symmetric shape,

 β_{N} = 2.7 and $H_{\text{IPB98(y,2)}} \approx 1.2$

Pulse #77922

Toroidal fied: 2.3 T Plasma current: 1.7 MA Upper / lower triangularity: 0.37 / 0.37 Elongation: 1.65 NBI power: 18 MW Electron density: 6×10¹⁹ m⁻³ Electron temperature: 5 keV Simulation time: 47.8 s – 48.8 s

Pulse #79635

- Toroidal field: 1.2 T Plasma current: 0.8 MA Upper / lower triangularity: 0.36 / 0.36 Elongation: 1.7 NBI power: 6 MW Electron density: 3×10^{19} m⁻³ Electron temperature: 3 keV Simulation time: 45.5 s – 46.0 s
- ★ Central densities and temperatures for pulse #79635 are approximately half in comparison with pulse #77922

Edge Pedestal Modelling

- ★ Pedestal is modelled assuming constant transport coefficients inside an ETB
- Transport coefficients are much higher than inter-ELM values in previous TRANSP-EDGE2D simulations
- ★ Higher values compensate for ELM-driven transport not being considered here
- With these values the calculated profiles match the experimental ones at the top of the pedestal

★ Zero carbon transport is considered inside the ETB

Other Modelling Assumptions

- ★ Equilibrium calculated by SPIDER and CHEASE
- Anomalous transport given by H-mode BgB model from JETTO
 Model has been validated on JET hybrid plasmas (L. Garzotti EPS 2012)
- ★ Neoclassical transport provided by NCLASS (no impurity transport) and NEOS
- ★ NBI heat & particle sources calculated by TRANSP and stored in ITM database
- ★ Experimental density and temperature profiles also processed by TRANSP No ion temperature or effective charge measurements for ρ > 0.85
- Carbon density evolved from an initial C+6 profile using the same anomalous transport coefficients as the main ions (BgB diffusion)
 This is a simple model with some limitations: no impurity sources or pinch

Modelling Results For Pulse #77922

★ The predicted ion temperature is overestimated at the plasma core

Force

TOKAMAK MODELLING

- ★ Electron temperature is quite well predicted, despite small discrepancy in the very core
- ★ The match between simulated and experimental densities is reasonable, particularly for ions, but
- ★ Densities don't show some details of the experimental profiles Gradient variations around $\rho = 0.3$ might have an effect on thermal transport

Modelling Results For Pulse #79635

★ Results are not too different from pulse #77922

sk Force

- ★ Better agreement between simulated and experimental ion temperatures than for pulse #77922
- ★ There is a large discrepancy in the electron temperature profiles

Discussion

- ★ There is a general good agreement between simulated and measured densities and temperatures
- ★ Electron density is calculated from quasi-neutrality, so it depends on the calculated carbon distribution
- ★ The predicted carbon distribution and effective charge are not entirely accurate
- ★ For #79635 the core effective charge is overestimated but the predicted electron density is still low This causes a mismatch in the electron density gradient
- ★ A higher density gradient should contribute to remove electron temperature discrepancy
- ★ These results should become better once impurity transport is improved

Effective charge: experimental vs. predicted by the ETS

EFDA Task Force EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

Issues with Impurity Modelling

Pulse #77922

Not in the paper — for discussion only

- ★ The ETS evolves all charge states from an initial C+6 only carbon density profile, but...
- ★ C+6 (from experimental n_e and Z_{effective} profiles) dominates over lower charge states in ETS simulations So why was the electron density underestimated?
- **★** No impurity sources considered: not able to reproduce carbon accumulation around $\rho = 0.5$
- ★ No pinch, only BgB diffusion, so carbon profile becomes flat and cannot replicate measured Z_{effective}
- ★ How to impose an experimental profile of Z_{effective} in the ETS? Need a pinch model neoclassical?