EFDA

EUROPEAN FUSION DEVELOPMENT AGREEMENT

Task Force INTEGRATED TOKAMAK MODELLING

> ACT1: Predictive (Te, Ti, current diffusion, NBI, etc.) modelling of Hybrid Scenarios and comparison to experimental data

A. Figueiredo, J. Ferreira, D. Kalupin ISM Working Session, JET, 23 November 2012

Goal for this week

What we want to do...

To simulate JET pulse #77922 with the ETS and compare with experiment

...And how we want to do it

- ★ ETS_A workflow using UAL 4.09a
- ***** -Experimental profiles in an ITM database (from TRANSP)
- ★ -NBI power deposition (from TRANSP)

- ★ NCLASS actor for current diffusion (resistivity and bootstrap current)
- ★ -Pedestal model (available in ETS_A)

*Since the official NCLASS actor will first be released for UAL 4.09a it's important for the continuation of this work to keep supporting the 4.09a ETS_A workflow in parallel with the upcoming 4.10a ETS_A

Bohm/gyro-Bohm in ETS_A...

- ★ The Bohm/gyro-Bohm actor available in ETS_A was for L-mode only, so...
- * An H-mode Bohm/gyro-Bohm model was needed, and it was suggested by Irina...
- To implement in ETS_A the exact same Bohm/gyro-Bohm model used in JETTO, provided by Florian, particularly useful for ITM modelling of JET pulses
- * A **new Bohm/gyro-Bohm actor** has been built and incorporated in ETS_A this week
- ★ The actor should circulate within the ITM (Innsbruck Code Camp) so it can be
 - Incorporated in the main release of ETS_A (IMP3), and
 - Become an official ITM transport model (IMP4)

...Bohm/gyro-Bohm in ETS_A...

Non-local Bohm-gyroBohm transport model in JETTO (F. Koechl)

Default Bohm / gyroBohm model for L-mode as implemented in JETTO (using IBOHMOLD = 1 in the namelist settings):

Bohm contribution:

INTEGRATED TOKAMAK MODELLING

$$\chi_{Be} = 2 \cdot 10^{-4} \frac{a_0}{B_0} \frac{\left|\partial p_e / \partial \rho\right|}{n_e} q^2, \quad a_0 = \frac{R_{out} - R_{in}}{2}, \quad \rho = \sqrt{\frac{\Phi}{\pi B_{ref}}}$$
$$\chi_{Bi} = 2\chi_{Be}$$

Task Force

Default Bohm / gyroBohm model with non-local multiplier as implemented in JETTO:

Bohm contribution:

$$\chi_{Be} = 8 \cdot 10^{-5} \frac{a_0}{B_0} \frac{|\partial p_e / \partial \rho|}{n_e} q^2 \frac{|T_e(\rho_{ped.}) - T_e(\rho_{int.})|}{T_e(\rho_{ped.})}, \quad a_0 = \frac{R_{out} - R_{in}}{2}, \quad \rho = \sqrt{\frac{\Phi}{\pi B_{ref}}}, \quad \rho_{int.} = \rho \left(R_{ped.} - 0.1085\right)$$

$$\chi_{Bi} = 2\chi_{Be}$$

gyroBohm contribution:

$$\begin{split} \chi_{gBe} &= 5 \cdot 10^{-6} \, \frac{\sqrt{T_e}}{B_0^2} \left| \frac{\partial T_e}{\partial \rho} \right|, \\ \chi_{gBi} &= 0.5 \cdot \chi_{gBe} \end{split}$$

- slightly different normalisation of BgB in ASTRA

- χ= 0.4χB_ASTRA*|Te(ρ_ped-10 cm) - Te (ρ_ped)| / Te(ρ_ped) + χgB

All quantities are in SI units except for Te which is in eV (and pe in eV m⁻³).

...Bohm/gyro-Bohm in ETS_A

E A Task Force EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

Existing vs. JETTO BgB...

\star T_e and T_i evolve from 47.8 s to 48.8 s with a 2 ms timestep

★ Pedestal at 0.90 with $\chi_e = 2.0 \text{ m}^2/\text{s} \& \chi_i = 0.4 \text{ m}^2/\text{s}$ inside ETB

Ion Temperature

EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

...Existing vs. JETTO BgB

Electron Temperature

EFDA Task Force EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

JETTO BgB: L- vs. H-mode...

Ion Temperature

EFDA Task Force EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

...JETTO BgB: L- vs. H-mode

Electron Temperature

Electron thermal diffusivities...

Existing vs. JETTO BgB

...Electron thermal diffusivities

JETTO BgB: L- vs. H-mode

