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Model-based control system: components

actuator commands measurements
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» State estimation (observer) separate from state control
 Appropriate when measurements are noisy and/or incomplete

« Automatic generation of feedforward trajectories
e Layer of abstraction for operators

 Model-based plasma controller
 Use model to predict the future and determine best control strategy
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Models for model-based control
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Models for model-based control

» Use first-principle models deeply embedded in design and
implementation of real-time control

* What models? not full physics models, but control-oriented models.
— Capability to run in real-time (or faster)
— Capture main dynamics and coupling, but no perfection needed
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Models for model-based control

» Use first-principle models deeply embedded in design and
implementation of real-time control
* What models? not full physics models, but control-oriented models.

— Capability to run in real-time (or faster)
— Capture main dynamics and coupling, but no perfection needed

* This talk: Presentation of new control-oriented code
RAPTOR (Rapid Plasma Transport Simulator)

 Features
e Applications
— Fast simulator for rapid scenario development, controller design, ...
— Profile reconstruction
— Trajectory optimization
— Real-time feedback control and prediction
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RAPTOR code contains key nonlinear couplings

affecting the dynamics of profile evolution

* Noncircular, axisymmetric, fixed poloidal flux surface shape
* 1D, (flux surface averaged) poloidal flux diffusion
O _ ReJ? D (Gz(w) v
1ot top Op \ J 0Op 27 p
 Neoclassical conductivity & bootstrap : Sauter-Angioni
* Electron temperature diffusion
V’%[neT e] = (.%GlV’nexe 8;;6
* Prescribed density profile evolution, Ti= k*Te TZ_>
 Ad-hoc analytical model for thermal diffusivity R

e Sources

 Parametrized model for EC deposition
 Pencil beam model for NBI (P. Geelen)
 Alpha particle, radiation, brehmsstr. included (J. van Dongen)

(1BS + Jext)

+V'P,
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RAPTOR uses implicit solver which calculates

Jacobians at all times, gives local linearization

 Numerics:
e Cubic spline finite elements
* Fully implicit, full Newton steps
* Analytic Jacobians for all terms
 few ms per time step

» Gradients computed using
forwards sensitivity method
o State sensitivities: dx/dp at all times. /

* Linearization of the profile dynamics
around the profile trajectory - local
linear model

* Important for numerical optimization
and controller design

 Model parameter optimization

 Automatically based on
experimental data - new work by

P. Geelen (to be submitted) % o
T U Technische Universiteit
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Model-based optimization of open-loop actuator

trajectories

Tokamak operational space
Which route to take?

Physics limit

€.J. ~pressure

Actuator
limit

Low current,
transient profiles

eg ~|p
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Optimization problem: ingredients
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Optimization problem: ingredients

» Cost function J: reflects desired properties of plasma

 Weighted sum of several profile-dependent terms
- distance from target profiles (q, Te, Ei...)
= Flux consumption (for longer pulse)
— Stationarity (for relaxed profiles - flat loop voltage)
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Optimization problem: ingredients

» Cost function J: reflects desired properties of plasma

 Weighted sum of several profile-dependent terms
- distance from target profiles (q, Te, Ei...)
= Flux consumption (for longer pulse)
— Stationarity (for relaxed profiles - flat loop voltage)

* Constraints C: limitations on actuators and plasma

— Constrain actuator values or ramp rates
— Constrain profile evolution, avoid MHD, ...

 Parametrize inputs u(t) with a finite number of parameters p
 sum of basis functions P(t) (piecewise linear,constant,...)

* Problem: find p minimizing J(p), satisfying C(p)
* Solution: Sequential Quadratic Programming

 Gradients dJ/dp dC/dp are known, this greatly speeds up
computations.
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Results for ramp up to ‘hybrid’ g profile show

benefit of early heating and I, overshoot

3 free points per trajectory
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* Three actuators 3
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Results for ramp up to ‘hybrid’ g profile show

benefit of early heating and I, overshoot

3 free points per trajectory

 Three actuators 3
* lp, Pec(p=0), PECCD(p=0.3)
 Two cost terms
e Maximize stationarity
e Minimize flux cons.
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Results for ramp up to ‘hybrid’ g profile show

benefit of early heating and I, overshoot

3 free points per trajectory

 Three actuators 3
* lp, Pec(p=0), PECCD(p=0.3)
 Two cost terms
e Maximize stationarity
e Minimize flux cons.

* Multiple constraints

 Result:
e Lower flux cons.
* Flatter Uy profile
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Perspectives and future plans for trajectory

optimization

* Optimization of ramp-up
e First applied to simulated TCV ramp-up [F. Felici PPCF 2012]

 Recently applied to ITER hybrid scenario simulations
(see next talk by J. van Dongen)

e Validation of optimized ramp-up trajectories in existing tokamaks
envisaged

* Optimization of ramp-down ?
e Appropriate cost functions/constraints?
e Optimal (varying?) I, rampdown rate

 Timing removal of different heating/cd actuators accounting for profile
dynamics?

Need to take shape evolution into account ?
* Provide guidelines to experiments and simulations: save valuable time
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Present-day real-time knowledge of plasma state

relies on diagnhostic snapshots only.
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Present-day real-time knowledge of plasma state

relies on diagnhostic snapshots only.

* In the past: feed measurements directly to plasma controller

* Today: constrained equilibrium reconstruction for some
controlled quantities (e.g. shape, q), direct feedback for
others (e.g. density)

 Drawbacks:
— Accuracy constrained by diagnostics, limited set of basis functions.

— Does not use knowledge of previous time: each time step is an independent fitting
problem.

 But: we run post-shot interpretative transport simulations to analyze
shots in detail, measurements often included in ad hoc fashion.
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Present-day real-time knowledge of plasma state

relies on diagnhostic snapshots only.

* In the past: feed measurements directly to plasma controller

* Today: constrained equilibrium reconstruction for some
controlled quantities (e.g. shape, q), direct feedback for
others (e.g. density)
 Drawbacks:

— Accuracy constrained by diagnostics, limited set of basis functions.

— Does not use knowledge of previous time: each time step is an independent fitting
problem.

 But: we run post-shot interpretative transport simulations to analyze
shots in detail, measurements often included in ad hoc fashion.
 Model-based plasma state reconstruction, merge model
prediction and diagnostic measurements

e Amounts to performing a real-time, measurement constrained
simulation of the plasma time evolution.
= Known in control literature as dynamic state observer, or Kalman filter.
— Widely used in robotics, image processing, broad literature exists
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Predict next plasma state with model, correct by

diagnostic measurements

« Components of model-based state observer
 Forward simulator (predict state one step ahead)
e Diagnostic model (predict measurements from predicted state)
e Measurement update (correct state based on actual measurements)

actuator commands measurements
» Tokamak

[Real-time control]
Tokamak predicted
i ) Diagnostic |measurements
»| simulation > n1goc(|)es| ¢ >_(g
—»| time step
- predicted state
-] v
updated state | Measurement L measurement residual
update
Controller Model-based, dynamic state estimator ("observer")
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State observer

* Full state knowledge means everything, not just what you
measure.
* q, shear, Te, dTe/drho, jaux, jbs, jon profiles
e Confinement time, non-inductive current fraction, H-factor, ...

 Measurement update law reflects confidence in models vs
measurements
e Diagnostic noise?

- Filtered out naturally by model: accept only variations consistent with model time
scales.

e Disturbances / faults ?
— Detect systematic disturbances of measured evolution w.r.t. model
- Classify as normal (e.g. model mismatch) or off-normal (e.g. imminent disruption)
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Many advantages, no show-stopping challenges
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 “A la carte” choice of models and diagnostics used.
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 Constant comparison of measurements and model prediction enables
model-based fault detection e.g. diagnostic failure detection, disruption
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Many advantages, no show-stopping challenges

* Advantages:
 “A la carte” choice of models and diagnostics used.
 Accuracy improves with more/better diagnostics or models.
* Obtain self-consistent, unique plasma state.

e Consistently include multiple diagnostics with different temporal/
spatial resolution.

e Initial condition for plasma prediction (forecasting).
e Evaluate stability limits in real-time to find proximity to these limits

 Constant comparison of measurements and model prediction enables
model-based fault detection e.g. diagnostic failure detection, disruption
detection.

» Challenges
e “Good enough” models (not perfect)
* Diagnostic models including noise descriptions.
 Coupling with GS equilibrium to include magnetics.
o Classification of model errors, faults, disruption signatures.
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Pilot implementation done on TCV,

ASDEX-Upgrade implementation underway

* Pilot RAPTOR implementation solves
flux diffusion equation in real-time on

TCV real-time control system 1,————
o : . 0.8y fT o
* Kinetic profiles from real-time o
diagnostics 0'4 '
° [F Felici et al, NF2011] 02k . o SR SR s
) locz}tion of rationz}l q su1jfaces time [s]

0 | I I I I I I
0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2

« ASDEX-Upgrade implementation

 Flux and Te evolution, ~3ms per time step
 Real-time meas. update for Te from ECE
* First results at EPS2013

* ITER simulation proof-of-principle
e Work to do for this week
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Feedback control around nominal trajectory,

knowing expected variation of profile dynamics

]

| Controller on Nominal trajectory
o I with disturbance
|9
3 |
3 Nominal
QL .
+ | trajectory
N l

Feedback controller

with disturbance

time
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Model predictive control: determine optimal

future actuator trajectory to go back to reference

* Real-time prediction of plasma profile trajectory “for free”
* Naturally include (varying) constraints for state and actuator
« Early warning if constraints can not be met (disruption pred.)

< PAST FUTURE
_r —— > =
» —~e— Reference Trajectory
. - Predicted Output

Measured Output
Predicted Control Input
—— Past Control Input

Prediction Horizon

>

<« >
Sample Time

Kk k+1 k+2 k+p
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First results for ITER hybrid scenario show

feedback control with model errors, disturbances

 Work by Bert Maljaars (TU/e), to be presented at EPS2013

Actuator evolutions EC evolutions Rotational transform evolutions
15 10 1.5
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Conclusions

« RAPTOR: plasma profile evolution code for real-time control,
reconstruction & optimization

 Key nonlinearities captured in time-evolution

 Model-based optimization of actuator trajectories

 Numerically compute feedforward trajectories for ramp-up to and ramp-
down from flattop.

 Model-based plasma state reconstruction

* Provides a natural framework to merge diagnostic measurements with
model predictions.
 Model-based predictive control
 Look into the future, control if you can, give warning if you can not

* More details in the literature:
~ [F. Felici, PPCF (2012) 025002]
- [F. Felici, Nuclear Fusion (2011) 083051]

= [F. Felici, EPFL Thesis 5203, Lausanne, Switzerland]
http://dx.doi.org/10.5075/epfl-thesis-5203
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http://dx.doi.org/10.5075/epfl-thesis-5203
http://dx.doi.org/10.5075/epfl-thesis-5203

Thank you
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Backup slides
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Parameter sensitivity of profile evolution

* Time evolution depends on mode parameters
* One example: a transport model parameter
 Another example: a parameter defining the input trajectory

~ -~

f(@rs1, Tk, ur) = fr =0V k
* Differentiating with respect to parameter p, we get the

sensitivity equation = = = = =
yeq dfy _ Ofk O0Zpi: N O fr Oz, N Ofr Ouy, N Ofk
dp Ozk+r1 Op Oxr Op  Oug Op Op

0 =

e Linear ODE for dxx/dp, solve while evolving nonlinear PDE: Forward
sensitivity analysis

e Jacobians dfi«/dx,, dfi/dx.1 are known from Newton iterations
 Computational cost proportional to p

» dxi/dp gives the linearization of the state trajectories in the
arameter space | | T, Ox
P P Te(p, t)|p='pn+<5p ~ Te(/’at)p(, T dx Op op
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Multi-grid approach: validate solution against

perturbred models to test generalization

* Global nonlinear optimization
problem: Risk of local minima

1 | | | .
. . —©— Nominal model
* MUItlgrld approaCh £ 06 I Set of perturbed models
o Start with 1 free parameter, %
optimize Rt T
e Increase number of parameters & | | o
and start from last optimal < . H : : ?
solution 2 03 : | | l l
- Check generalization g 1 P N
capabilities of solutionby £ ——o—o
testing against set of S 01
perturbed models N . . . . .
P : : 1 2 3 4 5 6
 Little |mpr0V€‘ment in nominal # of free points in time grid (per actuator)

solution for n>4

 Degradation in perturbed models
for ni>3
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Different constraints are active at different times

during the ramp-up, consequences for control

« Similar scenario, only Upiedge>0 constraint

 Cost function gradient Al - —® P —
e Move in this direction 300! Nonzero gradient: | 7l
to decrease cost constrained optimum
. . 1.5}
« Constraint gradient 200
e Move in this direction b
to violate constraint 100} Cost function | osl
descent direction
I t I . f_ t_ 00 0.625 0.65 0.675 0.1 OO 0.625 0.65 0.675 0.1
* INPUT arc ciassitication ' ' | 2.5 - - -
p _ Ip (kA : /,dI /dt constraint : (b) PECCD [MW] ()
* Input constrained 3001 A i 2t
e State constrained : : sl
e Unconstrained 2001 |
| i
| U constrainy’ | :
100 . pledge .
I ascent direction ! 05!
« Consequences for 0 | (i) i

feedback control design % os o005 o005 ou 0025 005 0075 0.l
t[s] t[s]
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