

Numerical optimization of the actuator trajectories in ITER hybrid scenario

J. van Dongen^{1,2} D. Hogeweij² F. Felici³

¹University Utrecht

²DIFFER

³TU Eindhoven

June 3, 2013

Introduction

Verification of RAPTOR validity

Optimization of Actuators Results

Conclusion

Introduction

Verification of RAPTOR validity

Optimization of Actuators Results

Conclusion

What is the most efficient actuator trajectory for the ramp-up phase?

- Use RAPTOR for optimization: Fast simulation, suitable for numerical optimization
- Verify results using CRONOS: More complete model to verify RAPTOR outcome

- Adapt RAPTOR for ITER usage
- Compare RAPTOR results with respect to CRONOS
- Start optimization of ITER hybrid scenario

- Adapt RAPTOR for ITER usage
- Compare RAPTOR results with respect to CRONOS
- Start optimization of ITER hybrid scenario

- Adapt RAPTOR for ITER usage
- Compare RAPTOR results with respect to CRONOS
- Start optimization of ITER hybrid scenario

- Adapt RAPTOR for ITER usage
- Compare RAPTOR results with respect to CRONOS
- Start optimization of ITER hybrid scenario

Introduction

Verification of RAPTOR validity

Optimization of Actuators Results

Conclusion

The two main evolution equations in RAPTOR are:

$$\sigma_{\parallel} \left(\frac{\partial \psi}{\partial \rho} - \frac{\rho \dot{B}_{0}}{2B_{0}} \frac{\partial \psi}{\partial \rho} \right) = \frac{R_{0} J^{2}}{\mu_{0} \rho} \frac{\partial}{\partial \rho} \left(\frac{G_{2}}{J} \frac{\partial \psi}{\partial \rho} \right) - \frac{V'}{2\pi \rho} (j_{bs} + j_{cd}).$$

$$\frac{3}{2} V'^{5/3} \left(\frac{\partial}{\partial t} - \frac{\rho \dot{B}_{0}}{2B_{0}} \frac{\partial}{\partial \rho} \right) \left[V'^{5/3} n_{\alpha} T_{\alpha} \right] + \frac{1}{V'} \frac{\partial}{\partial \rho} \left(q_{\alpha} + \frac{5}{2} T_{\alpha} \Gamma_{\alpha} \right) = P_{\alpha}$$

Next: identify differences in the evolution equations of CRONOS and RAPTOR.

$$\sigma_{\parallel} \left(\frac{\partial \psi}{\partial \rho} - \frac{\rho \dot{B}_0}{2B_0} \frac{\partial \psi}{\partial \rho} \right) = \frac{R_0 J^2}{\mu_0 \rho} \frac{\partial}{\partial \rho} \left(\underbrace{\frac{G_2}{J}}_{\frac{J}{2}} \frac{\partial \psi}{\partial \rho} \right) - \frac{V'}{2\pi \rho} (j_{bs} + j_{cd}).$$

RAPTOR:

- 2D MHD equilibrium fixed
- Geometric factors $(G_1, G_2, V' \text{ and } J)$ are fixed in time

$$\underbrace{\boxed{\sigma_{\parallel}}}_{(\partial \psi)} \left(\frac{\partial \psi}{\partial \rho} - \frac{\rho \dot{B}_0}{2B_0} \frac{\partial \psi}{\partial \rho} \right) = \frac{R_0 J^2}{\mu_0 \rho} \frac{\partial}{\partial \rho} \left(\frac{G_2}{J} \frac{\partial \psi}{\partial \rho} \right) - \frac{V'}{2\pi \rho} (\underbrace{\underbrace{j_{bs}}}_{(\Delta \phi)} + j_{cd}).$$

RAPTOR:

 σ_{\parallel} and j_{bs} calculated using the equations in Sauter *et al.* CRONOS:

 σ_{\parallel} and j_{bs} taken from *NCLASS* routine.

The diffusive heat flux q_{α} :

$$\frac{3}{2}V'^{5/3}\left(\frac{\partial}{\partial t}-\frac{\rho\dot{B}_{0}}{2B_{0}}\frac{\partial}{\partial\rho}\right)\left[V'^{5/3}n_{\alpha}T_{\alpha}\right]+\frac{1}{V'}\frac{\partial}{\partial\rho}\left(\underbrace{q_{\alpha}}_{\bullet}+\frac{5}{2}T_{\alpha}\Gamma_{\alpha}\right)=P_{\alpha}$$

RAPTOR and CRONOS:

Equivalent Bohm-Gyrobohm transport model implemented.

The convective heat flux Γ_{α} :

$$\frac{3}{2}V'^{5/3}\left(\frac{\partial}{\partial t}-\frac{\rho\dot{B}_{0}}{2B_{0}}\frac{\partial}{\partial\rho}\right)\left[V'^{5/3}n_{\alpha}T_{\alpha}\right]+\frac{1}{V'}\frac{\partial}{\partial\rho}\left(q_{\alpha}+\frac{5}{2}T_{\alpha}\underbrace{\Gamma_{\alpha}}\right)=P_{\alpha}$$

RAPTOR:

Not simulated

CRONOS:

Simulated but negligible effect on profile evolution

Sources, sinks and updated physics

The following interactions were added to RAPTOR:

- P_{α} Developed fusion induced heating to electrons
- ► P_{ei} Introduced electron-ion heat loss for electrons
- P_{brem} Introduced bremsstrahlung radiation loss
- ► *P*_{line} Developed simple line radiation loss model
- ► P_{NBI} NBI heating & CD model improved by P. Geelen

Ion temperature assumption: $T_i = A(\rho) T_e$.

P_α - Developed fusion induced heating to electrons

- P_{ei} Introduced electron-ion heat loss for electrons
- Pbrem Introduced bremsstrahlung radiation loss
- ► *P*_{line} Developed simple line radiation loss model
- ► P_{NBI} NBI heating & CD model improved by P. Geelen

Ion temperature assumption: $T_i = A(\rho) T_e$.

- P_α Developed fusion induced heating to electrons
- P_{ei} Introduced electron-ion heat loss for electrons
- P_{brem} Introduced bremsstrahlung radiation loss
- ► *P*_{line} Developed simple line radiation loss model
- ► P_{NBI} NBI heating & CD model improved by P. Geelen

lon temperature assumption: $T_i = A(\rho)T_e$.

- P_α Developed fusion induced heating to electrons
- P_{ei} Introduced electron-ion heat loss for electrons
- P_{brem} Introduced bremsstrahlung radiation loss
- ► P_{line} Developed simple line radiation loss model
- ► P_{NBI} NBI heating & CD model improved by P. Geelen

Ion temperature assumption: $T_i = A(\rho) T_e$.

- P_α Developed fusion induced heating to electrons
- P_{ei} Introduced electron-ion heat loss for electrons
- P_{brem} Introduced bremsstrahlung radiation loss
- Pline Developed simple line radiation loss model
- ► P_{NBI} NBI heating & CD model improved by P. Geelen lon temperature assumption: $T_i = A(\rho)T_e$.

- P_α Developed fusion induced heating to electrons
- P_{ei} Introduced electron-ion heat loss for electrons
- P_{brem} Introduced bremsstrahlung radiation loss
- Pline Developed simple line radiation loss model
- P_{NBI} NBI heating & CD model improved by P. Geelen

lon temperature assumption: $T_i = A(\rho)T_e$.

- P_α Developed fusion induced heating to electrons
- P_{ei} Introduced electron-ion heat loss for electrons
- P_{brem} Introduced bremsstrahlung radiation loss
- Pline Developed simple line radiation loss model
- P_{NBI} NBI heating & CD model improved by P. Geelen

Ion temperature assumption: $T_i = A(\rho)T_e$.

t = 80 secBlue solid: RAPTOR, Red dashed lines: CRONOS

t = 100 secBlue solid: RAPTOR, Red dashed lines: CRONOS

J. van Dongen: Numerical Optimization ITER scenario

ρ -averaged difference:

J. van Dongen: Numerical Optimization ITER scenario

Introduction

Verification of RAPTOR validity

Optimization of Actuators

Results

Conclusion

Reference scenario taken from recent optimization publication: Dick Hogeweij's paper: '*Nucl. Fusion* **013008**, 53 (2013)'

hybrid scenario L-mode Heuristic optimization of q-profile I_p ramp-up until 80*sec* P_{ECCD} sources @ $\rho \approx .4$ & .55 P_{NBI} source of 16.9 MW

Reference actuators

J. van Dongen: Numerical Optimization ITER scenario

For ITG threshold:

$$J_{s/q} = -\int W_{s/q} V'(
ho) s(
ho)/q(
ho) d
ho$$

For stationary state:

$$J_{ss} = \int W_{ss} \left\| \left| \frac{dU_{pl}}{d\rho} \right| \right|^2 d\rho$$
$$J_{ss} = \int W_{ss}(\rho) ||U_{pl}(\rho) - U_{pl,edge}||^2 d\rho$$

Constraints:

- ▶ q > 1.05▶ $\sum_{i} P_{ECCD}^{(i)} \le 20$ MW, $P_{NBI} \le 16.5$ MW
- ▶ $0.5 \le l_p \le 15$ MA, $dl_p/dt \le 0.3$ MA/s

J. van Dongen: Numerical Optimization ITER scenario

(1)

(2)

For ITG threshold: (3) $J_{s/q} = -\int W_{s/q} V'(\rho) s(\rho) / q(\rho) d\rho$ For stationary state: (4) $J_{ss} = \int W_{ss} \left\| \left| \frac{dU_{pl}}{d\rho} \right\|^2 d\rho$ $J_{ss} = \int W_{ss}(\rho) ||U_{pl}(\rho) - U_{pl,edge}||^2 d\rho$

Constraints:

- ▶ q > 1.05▶ $\sum_{i} P_{ECCD}^{(i)} \le 20$ MW, $P_{NBI} \le 16.5$ MW
- ▶ $0.5 \le I_p \le 15$ MA, $dI_p/dt \le 0.3$ MA/s

J. van Dongen: Numerical Optimization ITER scenario

For ITG threshold: $J_{s/q} = -\int W_{s/q} V'(\rho) s(\rho) / q(\rho) d\rho$ For stationary state: $J_{ss} = \int W_{ss} \left\| \left| \frac{dU_{pl}}{d\rho} \right\|^2 d\rho$ $J_{ss} = \int W_{ss}(\rho) ||U_{pl}(\rho) - U_{pl,edge}||^2 d\rho$

Constraints:

- ▶ *q* > 1.05
- $\sum_{i} P_{ECCD}^{(i)} \leq$ 20 MW, $P_{NBI} \leq$ 16.5 MW
- ▶ $0.5 \le I_p \le 15$ MA, $dI_p/dt \le 0.3$ MA/s

J. van Dongen: Numerical Optimization ITER scenario

(5)

(6)

For ITG threshold: (7) $J_{s/q} = -\int W_{s/q} V'(\rho) s(\rho) / q(\rho) d\rho$ For stationary state: (8) $J_{ss} = \int W_{ss} \left\| \frac{dU_{pl}}{d\rho} \right\|^2 d\rho$ $J_{ss} = \int W_{ss}(\rho) ||U_{pl}(\rho) - U_{pl,edge}||^2 d\rho$

Constraints:

- ▶ *q* > 1.05
- $\sum_{i} P_{ECCD}^{(i)} \leq$ 20 MW, $P_{NBI} \leq$ 16.5 MW
- ▶ $0.5 \le I_p \le 15$ MA, $dI_p/dt \le 0.3$ MA/s

J. van Dongen: Numerical Optimization ITER scenario

For ITG threshold: (9) $J_{s/q} = -\int W_{s/q} V'(\rho) s(\rho) / q(\rho) d\rho$ For stationary state: (10) $J_{ss} = \int W_{ss} \left\| \frac{dU_{pl}}{d\rho} \right\|^2 d\rho$ $J_{ss} = \int W_{ss}(\rho) ||U_{pl}(\rho) - U_{pl,edge}||^2 d\rho$

Constraints:

- q > 1.05• $\sum_{i} P_{ECCD}^{(i)} \le 20 \text{ MW}, P_{NBI} \le 16.5 \text{ MW}$
- $_{_{32/48}}$ 0.5 \leq $I_{
 m p}$ \leq 15 MA, $dI_{
 m p}/dt$ \leq 0.3 MA/s

J. van Dongen: Numerical Optimization ITER scenario

Reference scenario taken from recent optimization publication: Dick Hogeweij's paper: '*Nucl. Fusion* **013008**, 53 (2013)'

hybrid scenario L-mode Heuristic optimization of q-profile I_p ramp-up until 80*sec* P_{ECCD} sources @ $\rho \approx .4$ & .55 P_{NBI} source of 16.9 MW $J_{sq} = -156.14$ and $J_{ss} = 0.778$

We know that J_{ss} has its optimal value at $J_{ss} = 0$

How about J_{sq} ? What is its optimal value?

Using assumptions on the MHD equilibrium, an optimal q-profile can be calculated.

Monitoring the relative distance to the optimal values is a quantitative measure to track our progress.

Optimal $J_{sq} = -275.25$ for RAPTOR equilibrium

J. van Dongen: Numerical Optimization ITER scenario

35/48

Introduction

Verification of RAPTOR validity

Optimization of Actuators Results

Conclusion

Initial optimization results compared to reference actuators for $J = J_{ss}(= 0.911) + J_{s/q}(= -2.1508)$. Reference (solid) and Optimized case (dashed).

Initial results 1/4

Initial optimization results compared to reference actuators

Comparing results from RAPTOR(blue) and CRONOS (red) at t = 100 sec:

J. van Dongen: Numerical Optimization ITER scenario

Quantitative results:

	RAPTOR	CRONOS
J _{ss}	0.009111	0.028611
rel J _{ss}	17.06 %	41.29 %
J _{sq}	-215.08	-278.62
rel J _{sq}	50.52 %	14.40 %

For relative J_{ss}/J_{sq} : reference distance to optimal is 100%

Next: Compare results from different cost function compositions

Compare J_{ss} , $J_{s/q}$ and $J_{ss} + J_{s/q}$

 $J = J_{ss} + J_{sq}$ (solid), $J = J_{ss}$ (squares) and $J_{s/q}$ (circles): Current overshoot favorable to J_{sq} and J_{ss} as previously seen in JET/TCV

) Compare J_{ss} , $J_{s/q}$ and $J_{ss} + J_{s/q}$

 $J = J_{ss} + J_{sq}$ (solid), $J = J_{ss}$ (squares) and $J_{s/q}$ (circles): Choice of cost function has most effect on far off axis ECCD.

J. van Dongen: Numerical Optimization ITER scenario

Quantitative results for $J = \nu_{ss}J_{ss} + \nu_{sq}J_{sq}$:

	$\nu_{\rm SS}$	$\nu_{s/q}$	J _{ss}	rel <i>J_{ss}</i>	J _{sq}	rel <i>J_{sq}</i>
Case 1	0	1	7.8804	1000.125 %	-233.96	34.7 %
Case 2	1	0	0.0160	2.06 %	-219.76	46.6 %
Case 3	1	1	0.01572	2.02 %	-220.14	46.3 %

Introduction

Verification of RAPTOR validity

Optimization of Actuators Results

Conclusion

 Successfully updated RAPTOR to simulate ITER hybrid discharges

Errors of most relevant profiles are within 15 % range of CRONOS results

- Shown an improved result verified in CRONOS compared to literature
- Both the J_{ss} and J_{sq} contributions can be lowered significantly in RAPTOR

- Verify new optimization results in CRONOS
- NBI timing also optimized
- Use new NBI model recently implemented
- Extend to H-mode

Thank you all for your attention!

Any questions?

- O. Sauter *Phys. Plasmas* 6, 2834 (1999)
- D. Hogeweij *Nucl. Fusion* **013008**, 53 (2013)
- F. Felici Plasma Phys. Control Fusion 54, 025002 (2012)