

Current ramp up in ITER: effects of impurity density

G.M.D. Hogeweij¹, G. Calabrò², A.C.C. Sips³, I. Voitsekhovitch⁴, JET-EFDA contributors & ITM-TF ITER Scenario Modelling group

¹ FOM Institute DIFFER, Assocoation EURATOM-FOM, Nieuwegein, The Netherlands www.differ.nl

² Associazione Euratom-ENEA, Frascati, Italy
 ³ EFDA CSU Culham, Culham Science Centre, Abingdon OX14 3DB, UK
 ⁴ EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, UK

Joint meeting of ISM and ITER-IO, CEA, Cadarache, France, 3 June 2013

Outline: - What radiation can we expect by given impurity concentration

- Effect of adding small concentration of W in ohmic ITER ramp-up
- Effect of applying ECRH from early in RU

Here we concentrate on the current ramp-up phase (which is most vulnerable)

Dick Hogeweij – Joint meeting of ISM and ITER-IO 6 June 2013

13 mei 2008

What radiation to expect: Radiation Model for W

a. Radiation data from D.Post. et al,
At. Data Nucl. Data Tables 20 (1977) 397
Uses "Average Ion Model" (corona eq.)
This is used in CRONOS

b. More sophisticated, using more detailed atomic physics:
Th.Pütterich et al, Nuc.Fus. 50 (2010) 025012
"Calculation and experimental test of the cooling factor of tungsten"

New data

- radiation peak shifted to slightly higher temperature (from 1 keV to ~1.5 keV)
- radiation peak bit lower and wider
- (note logarithmic scale on both x and y axis!)

Dick Hogeweij - Joint meeting of ISM and ITER-IO 6 June 2013

13 mei 2008

'ask Force

What radiation to expect INTEGRATED TOKAMAK MODELLING from C, Be and W?

Radiation as function of T_{e} Note W conc. 10³ times lower than C, Be For W both AIM and Pütterich W radiation peak at 1 / 1.5 keV (AIM / Pütt)

Dick Hogeweij - Joint meeting of ISM and ITER-IO 6 June 2013

Example from ohmic ITER ramp-up at modest $n_e = 0.25 n_{GW}$ and $n_W / n_e = 10^{-5}$ full / dashed lines : @ 10 / 70 s

Task Force

EUROPEAN FUSION DEVELOPMENT AGREEMENT INTEGRATED TOKAMAK MODELLING

Predictive modelling ITER ramp-up

Notes general:

- > Use n_e as given by ITER team: $n_e = 0.25 * n_{e,GW}$
- > Flat Z_{eff} assumed, as given by ITER team (i.e. Z_{eff} decreasing with increasing n_e);
- Ohmic RU
- ➢ Moderate ramp-up up to 12 MA @ 80s

Notes on simulations:

- > The CRONOS suite of codes is used
- > Start from 1.5 s when $I_p = 0.5$ MA
- Use simple AIM model for W radiation

however, comparison with Pütterich model will be shown for one case]

Bohm-gyro model used, original L-mode version

Note: first-principle model like GLF23 does not work well in L-mode ramp-up phase

ITER Predictive modelling time traces

Blue: only impurity is Be4+, Green: same Be4+, added W, nW/ne = $5 \ 10^{-5}$ Red: same Be4+, added W , nW/ne = 10^{-4} Cyan: same Be4+, added W , nW/ne = $2 \ 10^{-4}$

Notes:

> Very significant radiation when $n_W / n_e >= 5 \ 10^{-5}$

With n_W / n_e >= 10⁻⁴ the radiation losses lead to a "numerical disruption" (after 85 / 45 s), caused by T_e dropping to 0 near edge (next slide)

ITER Predictive modelling profiles

Same colour coding as previous plots

Notes:

> $n_W/n_e = 2 \ 10^{-4} \text{ W}$: profiles already deviate @20 s; @44 s large $T_e \sim 0$ region for $\rho > 0.6$ > $n_W/n_e = 1 \ 10^{-4}$: same happens at end of ramp-up

Dick Hogeweij - Joint meeting of ISM and ITER-IO 6 June 2013

ask Force

INTEGRATED TOKAMAK MODELLING

ITER Predictive modelling Closer look

Closer look – same colour coding as before

Many problems arise due to very peaked T_e profile & strong radiation loss in outer area:

- very low central q (2nd panel)
- I_i becomes far too high (3rd panel)
- Iot of extra flux consumption (4th panel)
- shrinking of effective plasma volume (5th panel)

 \rightarrow q=2 at effective plasma edge (6th panel)

With timely application or ECRH all these problems can be avoided (at least up to the W concentrations considered here) \rightarrow next sheet

ITER Predictive modelling mitigation with ECRH

[WW] bei

Analyze effect of ECRH: Blue: ohmic, only impurity is Be4+, Green: same Be4+, added W, nW/ne = 10^{-4} Green dashed: same, *improved radiation model* Red: same, *with added off-axis ECRH* (at ρ = 0.4 and 0.6), ramped to 20 MW between 30 and 50 s

Effects of ECRH:

 I_i restored to safe range
 extra flux consumption more than compensated
 T_e profile back to normal
 central q close to 1

Improved radiation model (Pütterich): *no significant effect on results Dick Hogeweij - Joint meeting of ISM and*

Conclusions & Outlook

Conclusions:

- For an ohmic ramp-up at moderate density, assuming flat Z_{eff} and uniform n_W / n_e the critical W concentration is n_W / n_e is just below10⁻⁴
- Above this W concentration, the T_e profile develops a 0 region outside ρ ~0.7, thus inducing strong peaking of current density, and strong problems regarding I_i, flux consumption and MHD
- With 20 MW of (off-axis) ECRH applied from early in the RU, the critical W concentration is much higher
- These results are independent of the W radiation model used

Further work:

- > What W concentration acceptable in ITER with ECRH from early in RU?
- > Analysis of JET ILW ramp-ups, cases with strong W radiation:
 - > W profile (is n_w more peaked than n_e ?)
 - Te and q profile evolution in such cases

Dick Hogeweij - Joint meeting of ISM and ITER-IO 6 June 2013

Task Force

INTEGRATED TOKAMAK MODELLING