

Integrated core-SOL modelling including impurity: ITER H-mode plasma

I. Ivanova-Stanik, F. Köchl, I. Voitsekhovitch, A. Polevoi, R. Stankiewicz, R. Zagorski

> Coupling of complex core-SOL codes (eg. JINTRAC):

- self-consistent simulations of strongly non-linearly coupled core transport, H&CD, pedestal and SOL physics is an advantage

- 2D SOL simulations are computationally expensive. Possible issues with core-SOL convergence

- limited application, mainly for transients: ELMs, L-H transition, ...

One of alternative approaches: scaling for SOL integrated in core codes

Combination of core code (ASTRA, CRONOS, JETTO) and COREDIV as a compromise: sufficient physics complexity and acceptable simulation speed

- core transport physics: theory-based transport, accurate H&CD simulations, equilibrium, current diffusion

- impurity equations (COREDIV)
- SOL-divertor (COREDIV)

Application to ITER H-mode (long pulse scenario): effect of pedestal density on plasma performance

Coupled JETTO-COREDIV simulations for ITER H-mode plasmas

A Task Force

INTEGRATED TOKAMAK MODELLING

- ITER H-mode
 scenario: 15 MA,
 5.34 T, 33 MW (NBI)
 + 20 MW (ECRH)
- Low density (ref.): n_{e_ped}=6e19 m⁻ ³, T_{e,ped} = 6.7 keV, T_{i,ped} = 7.5 keV
- High density: n_{e ped}=9.5e19 m⁻³, T_{e,ped} = 4.35keV T_{i,ped} = 4.83keV
- ➢ JETTO / GLF23, EPED, SOLPS boundary, no W →H98=0.85 at low and high ne, Q=
- COREDIV: effect of W?

- I. Voitsekhovitch -

ITER H-mode: COREDIV simulations

- Higher density is achieved by increasing gas puff (feedback: (8.8 -> 21.2)10²¹ 1/s)

Task Force

INTEGRATED TOKAMAK MODELLING

15

- $D_{D,T}$ =0.35 $\chi_{i,e}$; $V_{D,T}$ adjusted to match the GLF23 ne peaking. Similar particle transport at low and high ne. Impurity transport is the same as main species

- $P\alpha$ \uparrow , power to plate \uparrow , W sputtering \uparrow with ne \rightarrow high nW and Prad. W concentration increases due to sputtering, not transport

- Increase of power to plate ~11% (strongly increased α -heating and W radiation partly compensate each other)

	Low ne	High ne
Ρα [MW]	79.4	140.1
Core radiation [MW]	41.92	89.97
Radiation fraction	0.378	0.505
Power to plate [MW]	76.05	85.32
T _e plate [eV]	25.45	33.55
n _e plate [x10 ²⁰ m-3]	2.1	1.43
Recycling coefficient	0.9958	0.989
Sputtering flux, 1/s	1.1e20	1.9e20

Work in progress

JETTO simulations with W radiation from COREDIV (F. Koechl)

- Initial GLF23/JETTO runs with C impurity (solid) is compared to JETTO run with W and He concentration and radiation from COREDIV (dashed)

Task Force

R

- low ne: Pα= 74→92 MW
- Increased radiation is compensated by higher P $\!\alpha$ (lower dilution) when C is replaced with He and W
- high ne: $P\alpha$ = 80.5 \rightarrow 92 MW, but P_{LH} = IS 77 MW \rightarrow no H-mode solution

Sensitivity to local transport (impurity, main species and thermal) is particularly high with dominant alpha heating

- > High sensitivity to $D_{D,T}/\chi_{i,e}$. In present ITER simulations $D_{D,T}/\chi_{i,e}$ =0.35
- when $D_{D,T}/\chi_{i,e} = 0.1$ no self-consistent solution at high density (large He concentration, low $P\alpha$, high radiation)
- larger D_{D,T}/_{\chi,e} margins for flat ne profiles → transport of main species determining the ne peaking is important
- difficult to reduce D_{D,T}/\chi_{i,e} uncertainty using present experiments (D_{D,T}/\chi_{i,e}=0.1-0.35 gives similar results for JET plasmas)
- Fusion performance is sensitive to core thermal transport model: at given H98 factor the GLF23 and scaling-based models predict different Ti shape and Pα (Pα=84 MW (GLF23) and Pα=140 MW (scaling-based))