On Core-SOL Integration in Scenario Modelling for ITER

A.S. Kukushkin

ITER Organization, Cadarache, France

Presented at the ISM meeting, Cadarache, March 8, 2011

A.S.Kukushkin, ISM, Cadarache, March 8, 2011; ITER_D_47NPXB

Core-SOL integration: why?

- ISM goal: find a scenario providing necessary performance, consistent with available controls and satisfying technical limitations on all systems involved
- SOL/Divertor: one of such systems with limitations on target power loading, He removal and plasma detachment, controlling core fuelling and impurity contamination
- Over-simplified SOL models offer little help:
 - could provide separatrix *n* and *T*, but no neutrals, no geometry, no wall interactions
 - → no relation to technical limitations, no model of control actuators
 - such as gas puff, pumping speed or impurity injection
- No experiment yet in the parameter range of ITER
- → Internal consistence of the model extremely important

Core-SOL integration: how?

Scenario studies: long time scale (hundreds sec)

SOL/Divertor: time scale of tens msec \rightarrow quasi-steady-state

→ Direct coupling impractical:

SOL/Div much slower computationally

Indirect ("mediated") coupling:

parameterization of SOL/Div results

in terms of separatrix parameters

input: power and charged particle fluxes from core

(BC for SOL/Div)

output: n_i , T_e , T_i , Γ_n , E_n (BC for core)

hina eu india japan korea russia usa

Produces solutions for the core consistent with SOL/Div

Translates SOL/Div constraints to the core

Avoids using non-controllable BC (e.g. n_{sep}) for the core

Being used now for operational window studies

Episode 7: integration with core

Different time scales for core and edge \rightarrow direct coupling impractical Scalings to parameterise SOLPS results \rightarrow b.c. for ASTRA (1D) ASTRA: pedestal model; (n, T, Γ_n , E_n) = F(q_⊥, Γ_i) at separatrix Control: P_{aux}, Γ_{core} for core; Γ_{puff} for q_{pk}, S_p for He \rightarrow real controls \rightarrow Operational window for the whole ITER consistent with divertor

china eu india japan korea russia usa

A.S. Kukushkin, 12th PET, Rostov, Russia, 2nd September 2009 (ITER_D_2NJZH5)