JET high field/high current H-mode – extrapolation to DT operation	<pre>ctrapolation of Hybrid Scenarios to DT operation (Bohm-gyroBohm, CRONOS) - ronimo Garcia, ISM 29.09.2010.</pre>	n Jenkins: mainly HS extrapolation with rescaled temperatures	rese simulations: extrapolation of the DD H-mode plasma to DT phase (GLF23, MM08, TRANSP)	Outline	1. NBI simulations and alpha-heating for "reference" $DD \rightarrow DT$ discharge	2. Validation of transport models for reference DD discharge: GLF23, MMM08 and effect of rotation	3. NBI power scan for DT plasmas
	Ext Jer	lan	Th€ MN		7.	N.	<i>с</i> у.

Ο
. <u> </u>
\mathbf{O}
()
ŏ
ŭ
0)
<u>io</u>
Ţ
Φ
Ð
õ
Ψ
∞
Õ
$\tilde{\mathbf{O}}$
S)
\sim

- 3.6 T / 4.5 MA, q95=2.6
- High density, $n/nGW \cong 0.6$
- . PNBI = 23 MW, PICRH = 2.5 MW
- Phase selected for DT projection: 52-56 s
- Extrapolation to DT plasmas is done with the same density and rotation

 $DD \Rightarrow DT$: NBI simulations and alpha heating for reference discharge

Benchmarking of alpha heating in ASTRA and TRANSP (79698, 13 s)

- the output of TRANSP analysis run is used as an input for ASTRA

- different analytical expressions in ASTRA, MC simulations (NUBEAM) in TRANSP

- Palpha_astra = 0.412 MW, Palpha_transp = 0.8 MW

Transport modelling (GLF23/TRANSP) for reference D discharge

Te, Ti, j and equilibrium are simulated with measured plasma profiles (ne, Vtor)

- simulation domain: $0 \le \rho \le 0.85$, profiles are shown before the sawtooth crash
- modes are stable at $ho \leq$ 0.15
- similar temperature prediction when DD is replaced with DT plasmas

Transport modelling (MMM08/TRANSP) for reference D discharge

- Te, Ti, j and equilibrium are simulated with measured plasma profiles (ne, Vtor)
 - paleoclassical and DRBM contributions are off, Weiland part is dominant
 - modes are stable at $\rho \leq 0.15$
- similar prediction accuracy with MMM08 and GLF23

NBI power scan in DT plasma

All parameters are averaged over 14.5 – 15.7 s (two sawtooth crashes)

- Increase of NBI power iarrow increase of $\chi s ightarrow$ little/no increase of temperature iarrow stiffness increases with power \rightarrow test of stiffness for the DD phase

- measured density, rotation & pedestal at 23MW of NBI power has been used and not re-scaled - break of stiffness is needed to achieved high $extsf{Q} o extsf{accurate}$ prediction of rotation is important

Weiland model: isotope effect

H. Nordman et al, PPCF 2005

Figure 1. The normalized ITG growth rate, $\gamma/(c_{\rm SH}/R)$, as a function of $k_{\theta/\rho_{\rm SH}}$ for pure hydroget of tritium (*f*D_T) for $R/L_{\rm T} = 5.75$, $T_e/T_i = 1$, $f_i = 0$ and $R/L_{\rm nD} = 2.0$. The tritium density scale deuterium and tritium with $R/L_{\rm n} = 2$, $R/L_{\rm T} = 3.75$, $T_e/T_i = 1$ and $f_i = 0$.