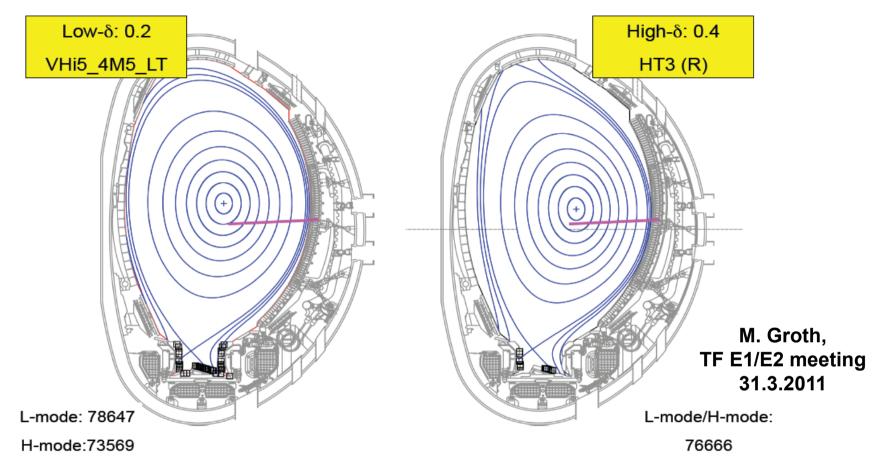


J.W.Coenen, R.Dux, M.Groth, T. Puetterich, G.J.van Ro

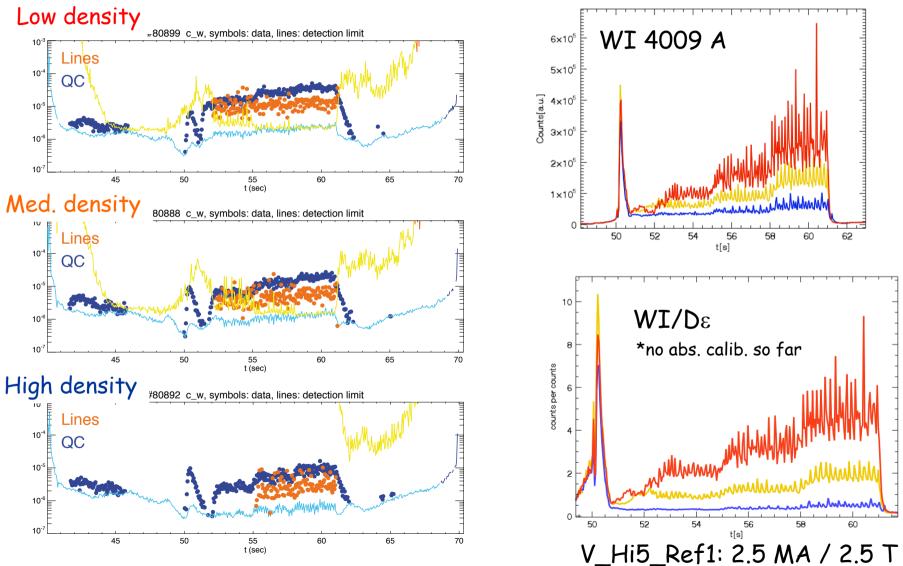
Introduction


Experiments Ex 1.1.7, 2.2.1,2.2.2 -..... Ex 3.1.2

- Tungsten Transport
- Divertor Erosion
- Impuritiy Composition and Control
- Detachment
- Understand
 - Tungsten transport
 - Tungsten sources
 - Impurities
 - Plasma Parameters

Main plasma shapes

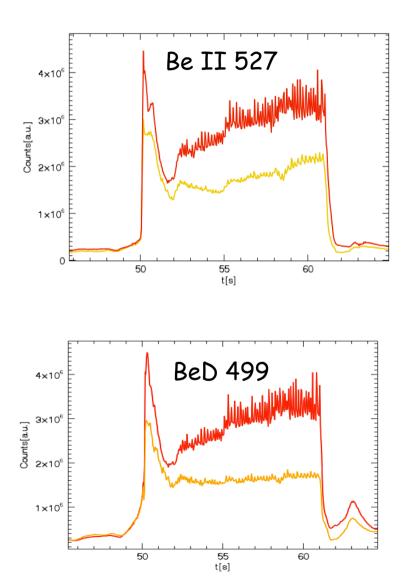
R.Dux

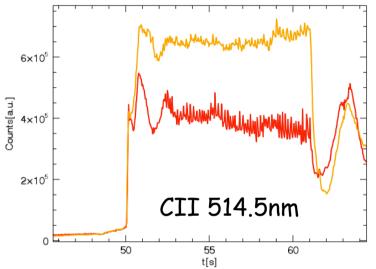


Strike point sweeps (± 2cm) are needed in all discharges to get good profiles from Langmuir probe and W influx measurements

Tungsten

80895,80889,80895


VUV emissions


EFJEA

Impurities

80845,80843

Ex 2.2.1

Beryllium,(Carbon) are the main intrinsic impurities

Oxygen almost invisible ... Argon visible mainly in the inner Div.

EFJEAT

Modelling for Experiment 2.2.2

- Experiment 2.2.2 is on W screening, peaking and control
- Modelling of the W screening is my main interest.
- W screening: What is the W density at the edge of the confined plasma (inside the pedestal) for a certain rate of sputtered W atoms in the divertor?

Depends on / Modelling has to capture

- prompt re-deposition of W
- parallel transport in the SOL (friction force, temperature gradient forces)
- perpendicular transport in SOL
- perpendicular transport in the edge transport barrier up to the pedestal top (ELMs flush out W, neoclassical impurity transport inbetween ELMs causes strong peaking of W across the pedestal region, ELM frequency can be taken from experiment)
- W production in divertor (strong variation in time; most W production during ELMs). Modelled W erosion does not have to fit experiment in absolute numbers but time behaviour has to fit.
- Screening can only be understood by modelling the whole ELM cycle

Additional Needs for Ex 2.2.1 /

- Experiment 1.1.7 is on W erosion / Experiment 2.2.1 is on Impurity composition & control
- Modelling of the W erosion deposition mechanisms are main focus
- Depends on / Modelling has to capture
 - prompt re-deposition of W
 - Divertor impurity composition and transport
 - Erosion mechanisms (extrinsic , intrinsic Imp., ELMs,)
 - Combining Background Plasma Solution and Divertor Simulations
 - Ex 3.1.2 uses similar plasmas to study Detachment

Combining efforts towards modling

EFJA

Available Measurements

W, ne, Te:

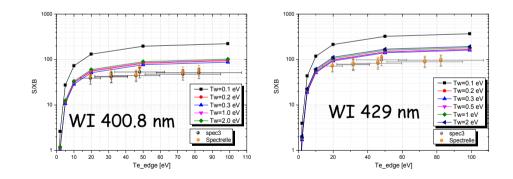
- total W divertor source rate from complete emissivity profiles of WI lines
- W density inside pedestal top from quasi-continuum around 5nm (T_e ~ 1.5 keV)
- Measurement of a WII line for estimate of prompt re-deposition
- Divertor parameters from Langmuir probes
- Te, ne profiles in the edge transport barrier

for different discharge conditions in order to separate SOL transport from transport across ETB

Strategy for W Transport (Ex 2.2.2):

- W density profile in ETB can not be measured and we can only indirectly separate SOL transport from transport across ETB
- in 0th order impurity transport in ETB is governed by ELM frequency
- differences of low and high δ shape wrt ETB transport and ELM stability shall be investigated to get same ELM frequency at different heating/fuelling levels
- comparison to L-mode plasmas at same shape

Tools / Issues


- Main Plasma
 - Edge2D/EIRENE ?
- Divertor
 - DIVIMP ?

Adapt solutions for HT3R Calibrated c_W for W-Transport studies

Check all impurties are incorporated appropriately (Be, O, C, Ar, N,..)

Spectral/Atomic Data

Erosion Yields , S/XB Values , Abs. Calibrations...

Main Issue:

Manpower ??

- Modeling needs include Plasma solutions for V_Hi5_... and HT3(R)
- Main Plama and Divertor Modeling
- Measurements include
 - W source and core / pedestal emissions
 - Plasma Parameters
 - Pedestal / Core
 - Langmuir Probes
- Modeling needs to be coordinated with all Experiments utilizing similar plasmas

Ex 2.2.2 Ex 3.1.2 Ex 1.1.7