Automated Reconstruction and Experimental Integrated Modeling and Data Analysis in DIII-D

Presented by

L.L. Lao for the DIII-D and the IMFIT Teams

ITER Integrated Modeling Technology Workshop Cadarache, France June 8-10, 2011

DIII-D and **IMFIT** Teams:

L.L. Lao,¹ G. Abla,¹ M.S. Chu,¹ A. Collier,¹ R.J. Groebner,¹ S. Flanagan,¹ W. Guo, N. Kim,¹ X. Lee,¹ G. Li,² T.H.. Osborne,¹ C. Pan,² J.M. Park,³ R. Prater,¹ J. Qian,² Q. Ren,² H.E. St. John,¹ D.P. Schissel,¹ S. Smith,¹ N. Bisai,⁴ R. Srinivasan,⁴ Y. Liu,⁵ A. Sun,⁶ M. Worrall,⁷ M. Murakami,³ V.S. Chan,¹ B. Wan,² and J. Li²

INDIA-IPR

¹General Atomics, San Diego, CA U.S.A.
²ASIPP, Hefei, Anhui, China
³Oak Ridge National Laboratory, Oak Ridge, TN USA
⁴Institute for Plasma Research, Bhat, Gandhinagar, India
⁵Dalian University of Technology, Dalian, Liaoning, China
⁶Southwestern Institute of Physics, Chengdu, Sichuan, China
⁷Colorado School of Mines, Golden, CO USA

Both Fast Reconstruction and Full Experimental Analysis Are Necessary to Support Tokamak Operation and Research

- Between-shot automated reconstruction requires fast analysis to guide operation
- Full experimental analysis necessary for accurate interpretation of experimental results and planning
 - Detailed equilibrium, transport, and stability modeling
- First-principle HPC integrated modeling
- PCS, plasma simulator

DIII-D automated reconstruction and development of new *modeling* tool *IMFIT* to support integration Experimental Planning Scenario Development Diagnostics/Heating Requirement PCS Specs

Experiment

Data acquisition and Management Between-Pulse Analysis Visualization

Post-Shot Analysis

Modeling and Simulations Visualization Theory-Experiment Comparison

Outline

- DIII-D automated between-shot and overnight analysis is based on a parallel multi-node Linux system to provide crucial equilibrium and transport information to guide plasma operation
- Extensive after-shot analysis is supported with a variety of Fortran, Python, and IDL based analysis tools for detailed physics studies and experimental planning
- A new modeling and analysis tool IMFIT is being developed to provide a central platform for integration of experimental analysis Operation and Research
 - First version installed in DIII-D and recently in EAST and SST-1

The Goal of DIII-D Automated Between-Shot Analysis is to Provide Immediate Understanding of Previous Discharges

- Evaluate plasma shape, beam heating and torque, RF heating and current drive, magnitude of bootstrap current, confinement factors,
- Find changes needed in parameters for upcoming discharge
 - For example, how to adjust EC launch angles to improve alignment of ECCD with a resonant surface
- Archive analysis for general use
 - All results are stored in MDSplus for general access

Specific framework requirements

General Overview of Between-Shot Processes

- Codes (IDL, Python, etc) are launched onto a Linux parallet cluster after data dependencies are satisfied
- Data required to run code can be read from files or specific DIII-D databases such as PTDATA or MDSplus
- When code finishes, results are typically stored into MDSplus using a loader code

DIII-D Automated Between-Shot Analysis Consists of Equlibrium, Profile, and Transport Analyses

- Entire between-shot analysis cycle takes about 12 minutes on a 48-node distributed Linux system
 - Six 2 quad-core AMD Opteron 2.0 GHz

Equilibria with and without MSE Are Routinely Reconstructed for all Discharges with *EFIT*

- 200-250 time slices are typically analyzed
 - Real-time EFIT's from PCS also available post-shot
- Many physical quantities crucial to the interpretation of experiments computed directly from the equilibria
 - Magnetic configuration, divertor geometry, stored energy, gaps, internal inductance,
 - Time derivative of a sequence of equilibria: Surface loop voltage, Ohmic heating power, energy confinement, ...

Developing between-shot kinetic EFIT reconstruction Essential for pressure and stability control

EFITViewer Provides a Convenient Tool to Interpret and Plan Subsequent Discharge Display and Visualization

Time Evolution of Equilibrium Data

Data Available for Portal Access

Visualization of Diagnostic Points

ZIPFITs Provide Equilibrium Mapped Profiles for Kinetic Quantities

- Electron Density
- Electron Temperature
- Ion Temperature
- Toroidal Rotation
- Impurity Density

Between-Shot ZIPFITs Start after Equilibrium and Data Available

- Equilibria come from between shot EFIT's
 - Currently based only on magnetics (EFIT01)
- Kinetic data come from a variety of diagnostics mapped into common space
 - Thomson Scattering
 - Electron Density
 - Electron Temperature
 - Electron Cyclotron Emission
 - Electron Temperature
 - Charge Exchange Recombination
 - Ion Temperature
 - Rotation
 - Impurity Density

ZIPFIT Flow Chart

11 Lao IM 2011

Automated Runs of ONETWO Follow Equilibria Reconstructions and Profile Fits

- AutoONETWO uses MSE EFIT and ZIPFIT fits
- For NBI it uses the NFREYA Monte Carlo "reduced model," for completion in 4 minutes (on 24 Linux nodes)
 - NUBEAM model is available for after-shot analysis
- For ECH uses TORAY-GA with 30 EC rays
- ONETWO uses 201 radial grid points, as needed for the narrow ECH deposition profiles
- All data are stored in MDSplus for plotting and use in analysis
- Currently only analysis mode

Between-Shot AutoONETWO Flow Diagram

AutoONETWO shows when ECCD is right place and size for suppressing n = 2 NTM

- AutoONETWO shows how the ECCD compares to the local bootstrap current
- AutoONETWO shows how well the ECCD location is tracking the q=2 surface
- Improved tracking and control of EC power and location can follow from this information

Strengths and Limitations in AutoONETWO

- MSE EFIT's are usually sufficiently accurate
- Automated fits to kinetic quantities sometime have issues related to "bad" data points
- At present, time derivatives are ignored except for Ohmic heating power, so in dynamic situations confinement and diffusivities are not well described
- AutoONETWO is redone overnight using improved CER analysis (CERAUTO, by R. Groebner)
- Presently only analysis mode, would be useful to do predictive runs between-discharge
 - GLF23, TGLF transport models computationally intensive

CERAUTO Is an Automated Fitting Process for CER Data

- Goal of CERAUTO process is to provide automatic high quality fits to Charge Exchange Recombination (CER) Spectroscopy data that can be used with high confidence
- Several ingredients are required to make CERAUTO successful
 - Use CERFIT, the standard non-linear least squares fitting routine for DIII-D CER data
 - Use time-tested fitting models (number and initial location of peaks, background treatment, etc.) to fit the data
 - Analyze only C VI spectra
- Use two major tests to reject questionable results
 - Reject results for which reduced χ^2 exceeds a specified threshold
 - Reject results for which ratio of amplitudes of passive and active C VI lines exceeds a specified threshold

CERAUTO Fits for T_i for Tangential Chords Compare Well to More Complete CERFIT Analysis

PyD3D Provides a Comprehensive set of Python Tool Kit for Analysis of ELM and Pedestal Physics Data

- Python based data analysis tool kit developed by T. Osborne <u>https://diii-d.gat.com/~osborne/</u> python/CLICKME.html
- Determine ELM timing and compute ELM energy loss from fast EFIT analysis
- Full electron and ion profile fittings with good edge resolution
- Interfaces to run kinetic EFIT and ONETWO
- Interfaces to MDS+ and ITER Pedestal Profile Databases

Kinetic EFIT Reconstructions

D3DPortal Provides a Convenient Tool to Monitor Status of Experiments and Between-Shot Automated Analyses

https://webportal.gat.com/apps/my/

Experimental So Web Portal	cience calendar clock efit d	emall_announcement run dam logbook				
Now doing KBM pedest	al experiment smithsp (2011-05-26 10:09)					
Experimental Schedule	Current Exp Summary	Status Information				
Previous Next	Latest shot: 144524	Shot Type PLASMA SHOT				
May 2011	Time of Shot : 2011-05-26 13:48:48	Next Shot 144525				
Su Mo Tu We Th Fr Sa	2011 21 01, DDE Info	BT Request 2.100000				
	Run: 20110526	IP Request 0.830000				
	Session Leader: snyder	Shot Status Start of				
8 9 10 11 12 13 14	Assistant Session Leader: groebner leonard osborne modes smithsp yanz Physics Operator: hvatt	Time to 0:0				
15 16 17 18 19 20 21	Assistant Physics Operator: sieckp	D3D				
22 23 24 25 26 27 28		Availability				
29 30 31						
	DAM: 144525					
Ops Day (Roll over a date to view detail or click to view	Customize DAM Fields					
previous summaries or		and the second				
upcoming daily schedules)	CER EFIT FCOIL MAG MDSPLUS MHD MSE					
	Errors: 0					
DIII-D - San Diego, CA, USA	Posts: 0					
2:01 PM	Errors: 0					
2.01 PM						
Thursday, May 26, 2011						
	Electronic Logbook	Bookmarks				
144574 0	*Please note this window should stay in the 2nd column for viewing	Add a new book mark				
144524		A 14				
	144525 PHYSICS_OPERATOR SIECKP May 26, 2011 14:00:23	• DIII-D				
time: 2700 0 - 0.4	Extended hold of most shape parameters to 5.5s (was leaving flattop at 5.0),	LeadList				
	then adding an x-point shift inward 10cm and down 5cm at 5.0s for IRTV.	 Logbook Z 				
	144524 SESSION LEADER snyder May 26, 2011 14:00:30					
0.2		144524				
-0.1	Good shot at st=2.1T, Ip=1.5MA. Very constant beta values, though a little lower than request because 150LT did not fire. No BES because no 150LT.	Customize Plot Fields				
	Will try again at this current and betan request of 2.6 for 2nd half of shot.	Diamag2				
-0.C						
	144524 PHYSICS_OPERATOR hyatt May 26, 2011 13:52:10					
	Paice TP to 1.5 MA, and DENP to 7.3 with Cas left alone. Paice the HV1 and HV2	0.010				
	programs a bit. Lower ZXP by 5 cm to get 88 to slide by without overcurrenting					
	the coil	0.020				
	Result: The D1 I^2t tripped at 5.4 sec. Otherwise a great shot	0.025				
		-1 0 1 2 3 4 5 6 7				
	1800 IP					

IMFIT Is Developed to Provide an Efficient Central Platform to Support Tokamak Experimental Research and Operation

- Primarily goal is to streamline and increase experimental productivity
 - Equilibrium reconstruction, transport, and stability analyses
 - Theory-experiment comparison
 - Operation scenario development
- Front-end experimental interface for SciDAC and FSP projects
- Training of students and scientists
- Currently only post experimental analysis, very limited between-shot or PCS support

DIII-D EDGE STABILITY DIAGRAM

Snyder / Osborne, 2010 IAEA

IMFIT Framework Based on a Modularized Task-Flow Architecture Event Driven

IMFIT Framework Consists of Managers, Components, and Utilities

- Execution and communication managed by Task Driver with a NETCDF based state file
- Support both graphical user and command-line interfaces (GUI, CLI)
- Tools available for communication with other format state files

IMFIT Framework Written in Python with an Unified Execution Model

Users Interact with IMFIT through GUI or Configuration File

 Analysis codes can be conveniently integrated into IMFIT through the Component Manager

1st IMFIT Version to Integrate Equilibrium Reconstruction, Transport, and Stability Analyses Has Been Released

Choosing Menu options creates task-flows and submits them to the IMFIT server (local or remote)

Based on the public PyGTK graphical user interface toolkit for Python

View and Prepare Experimental Data for Analysis

NATIONAL FUSION FACILITY

26 Lao IM 2011

000	X IMFIT v1.1					
🛛 🗹 Equilibrium 🖌 Tran	sport 🖋 Stability 🖋 EP Physics 🖋 Trace Profile 🖋 Tools 🖋 Help 📢 Quit					
EFIT Kinetic EFIT TRIP3D	Equilibrium Fitting Running EFIT Work Directory: /scratch/lao/test/efit-\$shot\$.\$time\$ Select Tokamak Device: ITER EFIT Version: 129x129 EFIT Mode: FILE 2					
Support Multiple Devices and Spatial Grids	K-file: //ask/imd/p/iMFH/drunk/le Open Edit Input Heip Special Tasks Kinetic Stability Execute Check View Results Generate Comment Quit [1] You chose EFIT mode 2: File Imput Heip					
INPUT: KFILE OUTPUT: equilibrium a,g, and m files [2] You chose ITER as the tokamak type [3] You chose EFIT grid size 129x129 [4] You chose /task/imd/p/IMFIT/trunk/Test/input_efit/it [5] You are running EFIT locally on lohan5 when finished, you'll be notified [6] /task/imd/apps/efit/iter/32/bin/efitd90 129 129 < t						
ып-в 🕼						

29 Lao IM 2011

IMFIT Kinetic EFIT Reconstruction

Run managed by Equilibrium Manager

○ ○ ○ X IMFIT v1.1							
؇ Equilibrium	🖋 Transport	🖋 Stability		🖋 Trace Profile	🖋 Tools	🖋 Help	🛃 Quit
👄 EFIT	-		_	_	-	-	
👄 Kinetic EFIT							
👄 TRIP3D							

IMFIT Kinetic EFIT Reconstruction

Run managed by Equilibrium Manager

000	X IMFIT v1.1			
🛛 🖉 Equilibrium	/ Transport 🖋 Stability 🖋 EP Physics	🖋 Trace Profile	🖋 Tools 🖋 Help	🛃 Quit
EFIT Kinetic EFIT TRIP3D	Indusport V Stability V El Hitysles Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability Image: Constraint of the stability <			
	asipp India-Ipr	32 Lao IM 2011	💠 GENERAL	. ATOMICS

IMFIT Kinetic EFIT Reconstruction

Run managed by Equilibrium Manager

Stability Analyses Can Be Conveniently Carried Out by Interacting with Stability Manager

IMFIT Experimental Stability Analysis

INDIA-IPR

ASIPP

DIII-D Vertical Stability Analysis

GENERAL ATOMICS

c/<u>122976_DND_QAX/eqdsk/g122976.03260_</u>

IMFIT Example: Ideal Stability Analysis

INDIA-IPR

- Ideal stability diagram tedious to generate
- IMFIT tool to allow more routine ideal stability analysis
- IMFIT Task
 - Kinetic equilibrium reconstruction or model equilibrium
 - GATO stability analysis for different n and conducting wall location

ENERAL ATOMICS

Visualize results

IMFIT Transport Development: GLF23 / TGLF Applications

New Tasks Defined Using Task Manager

Summary

- Both fast automated reconstruction and full experimental analysis are crucial for DIII-D research and operation and are presently supported with a variety of Fortran, Python, and IDL based analysis tools
- *IMFIT* is being developed to provide a central platform for integration of experimental analysis
 - 1st version released: magnetic reconstruction, transport and stability analysis (DIII-D, EAST, SST-1)
 - Ongoing developments: TGLF, energy and momentum transport, pedestal physics, EP physics, and 3D reconstruction, compound tasks (core/edge)
- Experience gained from IMFIT useful for ITER Integrated Modeling Programme and FSP

