

Extreme scale computing for integrated multi-scale physics in CPES*[†]

C.S. Chang¹ for the CPES² Team

¹Princeton Plasma Physics Laboratory ²SciDAC Proto-FSP Center for Plasma Edge Simulation *C*PES

*Work supported by US DOE OASCR and OFES. [†]Computing time provided by OLCF INCITE and NERSC ERCAP awards.

Outline

- Introduction of extreme scale simulation of multi physics in CPES
- Extreme scale elements: XGC full-f kinetic codes for the first-principles multi-physics in the whole volume
- Different challenges for extreme scale integration
- EFFIS for small to extreme scale integration
- Conclusion and discussion

Extreme scale simulation of multi physics in CPES

- Peta scale multi-physics, XGC1: full-f kinetic, whole volume, turbulence + neoclassical
- 0.1 peta scale, XGC0+DEGAS2: full-f kinetic transport modeling in whole volume,
 - Neoclassical + neutral + impurities + atomic + modeled anomalous transport
 - Poisson + Ampere for 3D B-perturbation
- Fera scale, M3D (& NIMROD): nonlinear MHD
- Small scale codes
 - 1) Grid transformation (M3D_omp)
 - 2) Magnetic equilibrium reconstruction (FlowM3D)
 - 3) Linear ELM criterion (Elite)
- Integration tools: Adios and Kepler
 - 1) In-memory and file based couplings, simultaneously
 - 2) In-situ job control (parameter injection)
 - 3) Data analysis and visualization on remote eSiMon dashboard

3

XGC1 Scales efficiently to the maximal number of Jaguar cores, and utilizes peta-scale routinely

12 cores per node, 2 MPI processes per node

- 900K particles per thread problem is more computationally intensive than 300K problem, which leads to ~20% higher particle push rate.
- Performance scaling is excellent for both problems.

CY10 Average Job Size and Utilization by Job Size Bins (Jan. 1 – June 27, 2010)

	Average Job Size	Utilization in
	in Cores	Core-Hours
Jobs requesting <20% of the available resources	3,079	8,446,978
Jobs requesting between 20% and 60% of the available resources	66,474	3,042,575
Jobs requesting >60% of the available resources	170,304	14,311,232

Multi-physics Integration on EFFIS (End-to-end Framework for Fusion Integrated Simulation)

Established

Extreme scale integration faces different challenges

- There are advantages, if adequately used:
 - -Code couplings can be established in memory without leaving the HPC platform, while still keeping independence of each code executables.
 - –Coupled simulation can finish in short time (ideallly, \propto 1/flop speed)
- Requires large restart file I/O:
 - Before ADIOS, 2Tb XGC1 restart file took > 1 hour for every hour of run on 196,608 process cores (using parallel HDF5).
 - -Adios (Adaptive I/O) in EFFIS: ~40GB/s: takes ~ 1m
- Smaller memory size per process core:
 - -XGC is now down to <0.3Gb/core
- Expensive data movement
 - -Data localization in XGC
- Framework should be able to support extreme scale computing and coupling: EFFIS is developed for this purpose.
- Inhomogeneous computing will be inevitable
- Fault tolerance needs to be built-in.

Large scale integration framework must handle, in real time, the large scale I/O data, coupling data, data movement, analysis, and visualization

EFFIS Design in Service Oriented Architecture (End-to-end Framework for Fusion Integrated Simulation)

HPC Physics service A with A' compiler Physics service B with B' compiler Physics service C with C' compiler CS service D with D' compiler Math service E with E' compiler*

Adios (UAL): A single batch job for memory and file couplings with internal workflow, data analysis and visualization on staging nodes

Kepler

Job submission/real-time control/monitoring,

Data Management/Analysis

Remote I

Remote II

Remote III

EFFIS framework is a convenient tool-set for SOA code integration (Example)

Fast I/O & data movement tools

Conclusion and discussion

- Development of extreme scale integration tools "EFFIS" for multi-physics simulation is moving along in CPES.
 - Take advantage of extreme scale computers: Perform as much multiphysics in full-f kinetic code.
 - However, still requires integration of separate executables for experimental time scale simulation including MHD and RF physics: spatio-temporal multi-scale.
 - Our current effort is more emphasized on ADIOS than Kepler
 - In-memory coupling operation in DataSpace
 - Real-time job control capability is in operation (first version, parameter injection)

Challenges at large

- Data size is becoming extreme. More advanced data management, analysis, and visualization tools are needed.
- Fault tolerance is a universal issue, but heavier for integrated simulations. Proper tools needed in service oriented architecture.
- Smart use of inhomogeneous computing
- More ...