# Code Structure and Data flow Management for Edge and SOL Integration

#### N Bisai and ITM Group

Institute for Plasma Research, Bhat, Gandhinagar-382428, India

June 9, 2011

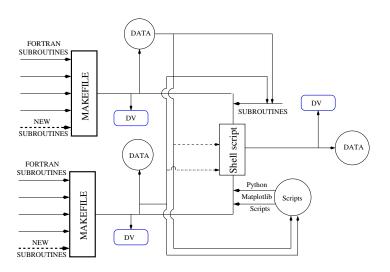
## Introduction to Integrated Tokamak Modeling

- We started Integrated Tokamak Modeling (ITM) in India
- We already have many separate codes (equilibrium, stability, etc..)
- Interconnecting (I/O exchange) of the codes had started
- Criteria:
  - Programming structures as simple as possible
  - Mainly FORTRAN-90 is used for programming

In this talk, only ITM related to edge and SOL integration will be presented.

#### SIMD for ITM

- We did not use MPI or openMP for programming
- We use single instruction multiple data (SIMD) programming using FORTRAN 90/95
  - The programmer writes a single operation, "+" say, and the compiler causes it to be carried out on multiple pieces of data in as parallel a manner as the underlying hardware allows (SMP)
  - 2 It is SIMD in Multi cores (Quad-core, Hexa-core, etc., with hyper-theading Technology) Workstation


#### Softwares for ITM

Following softwares are used for the Integrated Tokamak Modeling

- FORTRAN 90/95 (vectorization for SIMD)
- NetCDF
- NCARG (on fly data visualization)
- Makefile
- Shell Script
- Python

Our ITM is based on Mainly OPEN SOURCE softwares (only non free software is FORTRAN 90/95 compiler). We used CLI rather than GUI.

#### Typical structure of ITM



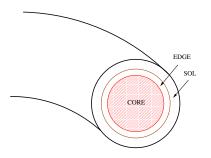
DV=Data Visualization by NCARG or Python

## Programming

Integrated Tokamak Modeling is based on extensive use of

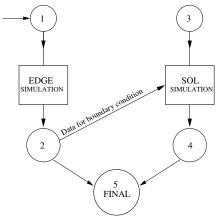
- Main programming:
  - Mainly Fortran 90 using vector programming in SIMD
  - ② It also uses NETCDF (F90 API) library
  - It also uses NCARG for visualization
  - If a special diagnostic is needed we need to write new subroutines

NCARG for data visualization, programmed within main FORTRAN codes.


# Programming (continue)

- Python programming: We use object oriented python programming for managing data flow
  - Numpy:
    - ⇒Matrix manipulations for generating input data as well as for synthetic diagnostics. Statistical data description like probability distribution, nean, std, etc..
  - ② Scientific-python: ⇒python numerical library for short numerical computing as well for synthetic diagnostics
  - Open Python-matplotlib:
    - $\Rightarrow$ 2D & 3D Data visualizations.

# Programming (continue)


- Makefile
- Shell script (bash):
  - To run Fortran codes sequentially
  - Inter data communications
  - Data generation in fly and removal
  - To run python scripts
- Python script:
  - To run FORTRAN codes sequentially
  - Inter connections among codes
  - 3 Data generation, analysis, synthetic data and visualization

# ITM for Edge and SOL Coupling (Example)



- Edge region is governed by a set of equations
  Edge has influence from core
- SOL region is governed by another set of equations
  SOL has influence from edge

## Data Flow for Edge and SOL



- 1. Input for edge
- 2. Output from edge (With Graphics)
- 3. Input for SOL
- 4. Output from SOL (With Graphics)
- 5. Edge+SOL data (With Graphics)

# Summary & Conclusions

- Only we use only CLI. This is simple but robust for our purpose.
- We need to change only FORTRAN subroutines for different diagnostics purposes. Need recompiling and execution
- Data flow maintained mainly shell scripts and python scripts
- Data visualization by NCARG or matplotlib