
The SWIM Integrated Plasma Simulator
(IPS)

Framework For Loosely Coupled Fusion
Simulations

Wael R. Elwasif
Oak Ridge National Laboratory
And the SWIM Project Team

June 8, 2011 Elwasif -ITER IM - 2011 2

The SWIM Project

● Center for Simulation of RF Wave Interactions with
Magnetohydrodynamics (SWIM).

● One of three US DOE SCIDAC centers looking into
coupled fusion simulations
— Typically referred to as the proto-FSP projects.

● Primary Objective
— Study the use of RF Waves to control the stability of

burning plasma in a fusion tokamak.
● More info: http://cswim.org

http://cswim.org/

June 8, 2011 Elwasif -ITER IM - 2011 3

Motivation and Background

● Systemic coupling of disparate fusion codes
— Prelude to Fusion Simulation Project (FSP)

● Heavily used, mature, long-lived codes
— Occasional two-way coupling

● Different characteristics and capabilities
— Parallelism, data format, execution work flow,..

● No mandate to re-factor major codes
— Beyond the scope of the project.

● Codes WILL change during the project lifetime
— Avoid forking and loss of new features.

June 8, 2011 Elwasif -ITER IM - 2011 4

• Minimize level of effort to bring in physics codes
― Avoid bifurcation of physics modules – not different

SWIM/stand-alone versions
― Wrappers around unmodified codes
― Use application native I/O, transform to shared data

using state adapters

• Design for broader range of integrated simulation than
required
― Prototype for FSP framework needs - Generalizability
― Target loose coupling initially, but with concepts that

“scale” to stronger coupling – Not needed so far

Computing Philosophy & Approach

June 8, 2011 Elwasif -ITER IM - 2011 5

• Design for multiple implementations of each physics
component
• Code-based interfaces vs Physics-based interfaces
• Accommodate reduced models, inter-comparisons

(V&V), etc.

• Component Approach
• Based on Common Component Architecture concepts
• Simplified implementation, focusing on concepts, key

features

Computing Philosophy & Approach (2)

June 8, 2011 Elwasif -ITER IM - 2011 6

● Simulation framework
― Light weight, Python-based implementation (4328 LOC)
― Adaptability, extensibility, and flexibility
― Provide services to connected components

● Pluggable components:
― Python and Python-wrapped functional units
― Use framework services to coordinate execution

● Plasma state layer
― Data repository, conduit for

inter-component data
exchange

● File-Based data exchange
― No change to underlying codes
― Simplify ”unit testing”

 The Integrated Plasma Simulator (IPS):
 Design Features

June 8, 2011 Elwasif -ITER IM - 2011 7

Schematic of a Classical IPS Application

IPS Framework
Provides basic support
for file management, job
control, portal interface,
etc.

Driver

Orchestrates and
sequences calculations,
makes decisions about
control flow in response
to component results

Setup

init
Initializes plasma
state as needed for
chosen simulation

AORSA

rf_ic

TSC

epa

CQL3D

fokker_planck

Components implement (one or more) specific interfaces.
A given interface may have multiple implementations.

PSv2

plasma_state

All data exchange
between components
goes through Plasma
State

June 8, 2011 Elwasif -ITER IM - 2011 8

Drilling Down: Typical Component Structure

Driver
PSv2

plasma_state

AORSA

rf_ic

AORSA
fortran executable

Prepare_input
helper executable

Process_output
helper executable

Local AORSA
input files

Local AORSA
output files

Fortran helpers map
Plasma State data
to/from AORSA-
specific files

IPS design/specifications say nothing about
internal implementation of components.

Framework
Services

rf_ic.aorsa
Python wrapper

(init, step, finalize)

Python wrapper
provides entire
external interface

June 8, 2011 Elwasif -ITER IM - 2011 9

Hooking it All Up – IPS Framework Services

• Configuration management
− Simulation configuration
− Component instantiation and

configuration
• Task management

− Mediate inter-component
method invocation

− Manage execution of
underlying applications

• Data management
− Input/output data staging
− Mediate concurrent access

to plasma state files
− Manage data for checkpoint

and restart (framework level)

• Resource management
− Manages pool of resources

provided to batch job in
which IPS is running

− Concurrent access to shared
simulation resources (mainly
compute nodes)

• Event management
− Asynchronous

publish/subscribe event
model for inter-component
information exchange

• Simulation monitoring
− Progress monitoring via

SWIM web portal

June 8, 2011 Elwasif -ITER IM - 2011 10

IPS Execution Environment

June 8, 2011 Elwasif -ITER IM - 2011 11

SWIM Web Portal

F
T

B

A
A
A
A

A
A
A
A

A
A
A
A

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
B
C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

Framework

Plasma State

Resource
Manager

Task
Manager

Data
Manager

Config.
Manager

Event
Manager

Message Handler

Comp B

S
e

rvice
s

P
ro

xy

Comp A

S
e

rvice
s

P
ro

xy

F
T

B
 B

ridge

S
e

rvice
s

P
ro

xy

Comp C

S
e

rvice
s

P
ro

xy

Driver

S
e

rvice
s

P
ro

xy

Portal
Bridge

S
e

rvice
s

P
ro

xy

Launch simulation

Monitor
progress

Head Node

Compute
Nodes

Method invocation

Framework In

Service Response

June 8, 2011 Elwasif -ITER IM - 2011 12

IPS Supports Four Levels of Parallelism

• Parallel Tasks (physics applications)
– Used routinely – SWIM physics applications

vary in parallelism
• Concurrent task execution

– A component can launch multiple
concurrent tasks

– Basis of Parareal implementation
(discussed later)

– Also useful to (for example) create
a component that parallelizes over flux
surfaces implemented with a physics code that treats one surface at a time

• Concurrent component method execution
– Also known as concurrent multitasking or multiple-component multiple-data

(MCMD) execution
– As long as data dependencies are respected, many components can be run

concurrently
– Exposes more parallelism; can improve resource utilization, time to solution

• Multiple independent simulations can be executed in a single IPS
invocation

– Simple extension of concurrent multitasking
– Exposes more parallelism; can improve resource utilization, time to solution

June 8, 2011 Elwasif -ITER IM - 2011 13
13

Multiple stability analysis components
running on multiple toroidal modes, all
running concurrently on t-1 results.

Equilibrium and profile advance for step t,
including parallel anomalous transport tasks for
each flux surface, all running concurrently with
the Fokker Planck component.

Concurrent Multitasking for a Complex
Simulation (1)

June 8, 2011 Elwasif -ITER IM - 2011 14

Concurrent Multitasking (2) and
Multiple Simulations

GENRAY

Initial Slow MHD Scenario

NIMROD

NIMROD

NIMROD

•
•
•

GENRAY

“Ensemble” of Coupled Simulations

EPA AORSA

EPAAORSA

EPA AORSA

EPA AORSA

EPAAORSA

•
•
•

Two (or more) simulations (i.e. multiple pedastal
heights) share the same processor allocation,
running out of phase to maximize utilization.

timetime

June 8, 2011 Elwasif -ITER IM - 2011 15

Multiple Simulations In Action
Multiple Simulations Cray XT5 at NERSC

• Average processor usage for first 200 sec of simulation is about 58%. Is
this good?

• How can I know how many simultaneous simulations to run and how
many cores to use?

Execution time for IPS tasks
Processor utilization for
9-simulation parameter scan

June 8, 2011 Elwasif -ITER IM - 2011 16

Simulating Resource Utilization

Processor usage efficiency

A model based on mean and standard deviation of task execution
time in different simulation phases predicts performance

Single
simulation

9 simulation
scan

9 simulation
scan

Total run time per simulation
Single
simulation

June 8, 2011 Elwasif -ITER IM - 2011 17

Flexible Task Parallelism in IPS
Components
• Single blocking and non-blocking task invocation.

– Component manages outstanding tasks.

• Task Pools:
– Create n>1 tasks to be managed by the framework.

– Framework manages scheduling, resource allocation,
and task execution for all tasks in the pool.

• Blocking: Wait for all of them to finish.

• Non-Blocking: Query for finished tasks periodically.

• Used in “standard” implementation of Parareal

June 8, 2011 Elwasif -ITER IM - 2011 18

Event-Based Control Flow in IPS
Simulations

• One (or more) components acting like “servers”
– May require slight modification to underlying codes if they

too will run as servers.

• Asynchronous events published to pre-defined topics
(channels), when an event of interest occurs.
– Topics and event payload agreed upon among

participating entities.

• Components subscribe to topics of interest and
periodically check for published events.
– Pull model to avoid threading complications

June 8, 2011 Elwasif -ITER IM - 2011 19

Case Study: Parareal Using the IPS

● Parareal: Parallel In Time
— Iterative parallelization (domain decomposition) of

time in time-dependent problems.
● Requirements

— A “fast” coarse solver (G), and an “accurate” fine
solver F.

— G should have enough physics, resolution, ..etc to
propagate the “essential” physics forward in time.

● Also needed:
— Convergence measure.
— Operators to transform the states of G and F to inputs

for F and G, respectively.

June 8, 2011 Elwasif -ITER IM - 2011 20

Parareal – Prior Art and Current Work

● Y. Maday, G. Turinici, C. R. Acad. Sci. Paris, Ser. I 335 (2002)
387–392.

● L. Baffico, S. Bernard, Y. Maday, G. Turinici, G. Zérah, Parallel
in time molecular dynamics simulations, Phys. Rev. E 66 (5)
(2002) 057706.

● ...
● D. Samaddar, D.E. Newman, R. Sánchez, Parallelization in

time of numerical simulations of fully-developed plasma
turbulence using the parareal algorithm, J Comp Phys
229(18) (2010) 6558

● L. Berry, W. Elwasif, J. Reynolds-Barredo, D. Samadar,
R. Sanchez, and D. E. Newman, Event-Based Parareal: A
data-flow based implementation of Parareal,
In Preparation.

June 8, 2011 Elwasif -ITER IM - 2011 21

Classical Parareal using the IPS

● Components: Driver, Fine Solver, Coarse Solver
● Driver: Flow control
● Coarse Component:

— Evaluate (sequentially) coarse solution for the entire
time domain.

● Fine Component:
— Use IPS's task pool to evaluate fine solution in

parallel for the entire time domain (as permitted by
available compute resources).

● Framework manages resource allocation and
dispatching of tasks in the task pool.

June 8, 2011 Elwasif -ITER IM - 2011 22

IPS Multi-Task Parallelism for Parareal
● Two levels of parallelism
● Fine solver executes a task for each un-

converged slice, concurrently (forall)
first_slice = 1
num_converged = 0
for iteration = 1, max_iterations
 for slice = first_slice..num_slices
 coarse_solve(iteration, slice)

 forall slice = first_slice..num_slices
 fine_solve(iteration, slice)

 for slice = first_slice..num_slices
 test_convergence(iteration, slice)

 num_converged +=
 first_non_converged_slice - first_slice
 if (num_converged == num_slices)
 end // SUCCESS
 else
 first_slice = first_non_converged_slice
end //Failed to converge in max_iteration

June 8, 2011 Elwasif -ITER IM - 2011 23

Classical Parareal using the IPS

It is non-trivial to find really fast and “good enough” coarse solvers.
We can lower the barrier by dispatching tasks asynchronously.

It is non-trivial to find really fast and “good enough” coarse solvers.
We can lower the barrier by dispatching tasks asynchronously.

June 8, 2011 Elwasif -ITER IM - 2011 24

Asynchronous Event-Based Parareal

● Three levels of parallelism
— Concurrent components, concurrent parallel tasks.

● Three “server” components:
— Coarse, Fine, and Converge

● Driver component merely initiates the simulation.
● Implicit synchronization using IPS asynchronous events

published to pre-defined topics (channels).
● A task in a time slice (fine solve, coarse solve,

convergence check) is started as soon as its
prerequisites are satisfied.

● Components manage re-launch of tasks when lack of
resources prevent immediate execution.

June 8, 2011 Elwasif -ITER IM - 2011 25

Improved Utilization And Run Time

But why execute the coarse (and fine) tasks when “the reach” of
the coarse solver is obviously diminished ??

But why execute the coarse (and fine) tasks when “the reach” of
the coarse solver is obviously diminished ??

June 8, 2011 Elwasif -ITER IM - 2011 26

Dynamic Slice Addition In Parareal

Significant reduction in required resources, while maintaining
convergence properties.

Significant reduction in required resources, while maintaining
convergence properties.

June 8, 2011 Elwasif -ITER IM - 2011 27

IPS Flexible Task Parallelism Improves
Utilization and Solution Time

No change to the “core” solvers, only in the task model and
execution flow control.

No change to the “core” solvers, only in the task model and
execution flow control.

June 8, 2011 Elwasif -ITER IM - 2011 28

SWIM Portal – Real-Time Job Monitoring

• http://swim.gat.com:8080/monitor

– Server hosted at General Atomics

• Portal usage is completely optional – IPS jobs
will run without it

• Real-time monitoring of job progress

• IPS framework instrumented to automatically
provide portal with status information based on
execution flow

– Component method invocations

– Data management
operations

– Task failures

– Messages sent via
simple http protocol

• Components can provide
additional information to
portal

Main page summarized
lists all recent IPS runs
with latest status
information

Run page provides
history of all messages
received by portal

June 8, 2011 Elwasif -ITER IM - 2011 29

SWIM Portal – Real-Time Monitoring &
Analysis

• Simulation monitoring
and summary analysis
via portal-based data
store and web browser

• Monitoring component
(in IPS) exports data of
interest to NetCDF file

– Separate from Plasma
State, smaller

• Portal imports monitor file
from web-accessible space on simulation
platform

• Simulation summary uploaded to MDS+,
available for analysis.

• HTML5 based summary graphs

• Comparisons (simulation & Experimental)

June 8, 2011 Elwasif -ITER IM - 2011 30

Parameter Sweeps & Optimization - DAKOTA

● DAKOTA Toolkit
— Optimization
— Uncertainty Quantification
— Parameter Estimation
— Parameter Studies

● Dynamic instantiation of IPS
simulations under DAKOTA
control

● Adapters map IPS simulations
to DAKOTA specs

● Exploit IPS resource and task
management and multiple
concurrent simulations capabilities

Adapter 1

DAKOTA

IPS

Simulation 1

Simulation 2

…

Simulation 3

DAKOTA Bridge
Component

Adapter 2 Adapter 3 …

June 8, 2011 Elwasif -ITER IM - 2011 31

Summary

● IPS provides a simple, light-weight framework for loosely
coupled, file-based, coupled simulations.
— When data exchange size and frequency allow.

● Adapting stand-alone codes for us in the IPS is fairly
straight forward
— Greatly simplifies debugging for coupled simulations.

● Multiple levels of concurrency provides flexibility to exploit
parallelism and improve resource utilization.

● Light weight, highly expressive Python environment
simplifies component development
— Total size of four Parareal components: 913 LOC

June 8, 2011 Elwasif -ITER IM - 2011 32

Some Meta Thoughts

● Trade off between flexibility and robustness should
not be rigid
— Different needs during different phasis in a project

● Incurring Technical Debt may be necessary
— As long as the interest doesn't grow too high

● Really Big machines are around the corner
— Today's supercomputer is tomorrow's cluster.

● Capability vs Capacity Computing
— We will probably need both, maybe on the same

machine.

June 8, 2011 Elwasif -ITER IM - 2011 33

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	PowerPoint Presentation
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

