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The SWIM Project

● Center for Simulation of RF Wave Interactions with 
Magnetohydrodynamics (SWIM).

● One of three US DOE SCIDAC centers looking into 
coupled fusion simulations
— Typically referred to as the proto-FSP projects.

● Primary Objective
— Study the use of RF Waves to control the stability of 

burning plasma in a fusion tokamak.
● More info: http://cswim.org  

http://cswim.org/
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Motivation and Background

● Systemic coupling of disparate fusion codes
— Prelude to Fusion Simulation Project (FSP)

● Heavily used, mature, long-lived codes
— Occasional two-way coupling

● Different characteristics and capabilities
— Parallelism, data format, execution work flow,..

● No mandate to re-factor major codes
— Beyond the scope of the project.

● Codes WILL change during the project lifetime
— Avoid forking and loss of new features. 
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• Minimize level of effort to bring in physics codes
― Avoid bifurcation of physics modules – not different 

SWIM/stand-alone versions
― Wrappers around unmodified codes
― Use application native I/O, transform to shared data 

using state adapters

• Design for broader range of integrated simulation than 
required
― Prototype for FSP framework needs  -  Generalizability
― Target loose coupling initially, but with concepts that 

“scale” to stronger coupling – Not needed so far

Computing Philosophy & Approach
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• Design for multiple implementations of each physics 
component
• Code-based interfaces vs Physics-based interfaces
• Accommodate reduced models, inter-comparisons 

(V&V), etc.

• Component Approach
• Based on Common Component Architecture concepts
• Simplified implementation, focusing on concepts, key 

features

Computing Philosophy & Approach (2)
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● Simulation framework
― Light weight, Python-based implementation (4328 LOC)
― Adaptability, extensibility, and flexibility
― Provide services to connected components

● Pluggable components:
― Python and Python-wrapped functional units
― Use framework services to coordinate execution 

● Plasma state layer
― Data repository, conduit for

inter-component data 
exchange

● File-Based data exchange
― No change to underlying codes
― Simplify ”unit testing”

 The Integrated Plasma Simulator (IPS):
 Design Features
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Schematic of a Classical IPS Application

IPS Framework
Provides basic support 
for file management, job 
control, portal interface, 
etc.

Driver

Orchestrates and 
sequences calculations, 
makes decisions about 
control flow in response 
to component results

Setup

init
Initializes plasma 
state as needed for 
chosen simulation

AORSA

rf_ic

TSC

epa

CQL3D

fokker_planck

Components implement (one or more) specific interfaces. 
A given interface may have multiple  implementations. 

PSv2

plasma_state

All data exchange 
between components 
goes through Plasma 
State
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Drilling Down: Typical Component Structure

Driver
PSv2

plasma_state

AORSA

rf_ic

AORSA
fortran executable

Prepare_input 
helper executable

Process_output 
helper executable

Local AORSA
input files

Local AORSA
output files

Fortran helpers map 
Plasma State data 
to/from AORSA-
specific files

IPS design/specifications say nothing about 
internal implementation of components.

Framework 
Services

rf_ic.aorsa
Python wrapper

(init, step, finalize)

Python wrapper 
provides entire 
external interface
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Hooking it All Up – IPS Framework Services

• Configuration management
− Simulation configuration 
− Component instantiation and 

configuration
• Task management

− Mediate inter-component 
method invocation

− Manage execution of 
underlying applications

• Data management
− Input/output data staging
− Mediate concurrent access 

to plasma state files
− Manage data for checkpoint 

and restart (framework level)

• Resource management
− Manages pool of resources 

provided to batch job in 
which IPS is running

− Concurrent access to shared 
simulation resources (mainly 
compute nodes)

• Event management
− Asynchronous 

publish/subscribe event 
model for inter-component 
information exchange

• Simulation monitoring
− Progress monitoring via 

SWIM web portal
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IPS Execution Environment
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SWIM Web Portal
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IPS Supports Four Levels of Parallelism

• Parallel Tasks (physics applications) 
– Used routinely – SWIM physics applications 

vary in parallelism
• Concurrent task execution

– A component can launch multiple 
concurrent tasks

– Basis of Parareal implementation 
(discussed later)

– Also useful to (for example) create 
a component that parallelizes over flux 
surfaces implemented with a physics code that treats one surface at a time

• Concurrent component method execution
– Also known as concurrent multitasking or multiple-component multiple-data 

(MCMD) execution
– As long as data dependencies are respected, many components can be run 

concurrently
– Exposes more parallelism; can improve resource utilization, time to solution

• Multiple independent simulations can be executed in a single IPS 
invocation

– Simple extension of concurrent multitasking
– Exposes more parallelism; can improve resource utilization, time to solution
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Multiple stability analysis components 
running on multiple toroidal modes, all 
running concurrently on t-1 results.

Equilibrium and profile advance for step t, 
including parallel anomalous transport tasks for 
each flux surface, all running concurrently with 
the Fokker Planck component.

Concurrent Multitasking for a Complex 
Simulation (1)
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Concurrent Multitasking (2) and 
Multiple Simulations 

GENRAY

Initial Slow MHD Scenario

NIMROD

NIMROD

NIMROD

•
•
•

GENRAY

“Ensemble” of Coupled Simulations

EPA AORSA

EPAAORSA

EPA AORSA

EPA AORSA

EPAAORSA

•
•
•

Two (or more) simulations (i.e. multiple pedastal 
heights) share the same processor allocation, 
running out of phase to maximize utilization.

timetime
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Multiple Simulations In Action
Multiple Simulations Cray XT5 at NERSC

• Average processor usage for first 200 sec of simulation is about 58%.  Is 
this good?

• How can I know how many simultaneous simulations to run and how 
many cores to use?

Execution time for IPS tasks
Processor utilization for 
9-simulation parameter scan
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Simulating Resource Utilization

Processor usage efficiency

A model based on mean and standard deviation of task execution 
time in different simulation phases predicts performance

Single 
simulation

9 simulation 
scan

9 simulation 
scan

Total run time per simulation
Single 
simulation
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Flexible Task Parallelism in IPS 
Components
• Single blocking and non-blocking task invocation.

– Component manages outstanding tasks.

• Task Pools:
– Create n>1 tasks to be managed by the framework.

– Framework manages scheduling, resource allocation, 
and task execution for all tasks in the pool.

• Blocking: Wait for all of them to finish.

• Non-Blocking: Query for finished tasks periodically. 

• Used in “standard” implementation of Parareal
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Event-Based Control Flow in IPS 
Simulations

• One (or more) components acting like “servers”
– May require slight modification to underlying codes if they 

too will run as servers.

• Asynchronous events published to pre-defined topics 
(channels), when an event of interest occurs.
– Topics and event payload agreed upon among 

participating entities.

• Components subscribe to topics of interest and  
periodically check for published events.
– Pull model to avoid threading complications
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Case Study: Parareal Using the IPS  

● Parareal: Parallel In Time
— Iterative parallelization (domain decomposition) of 

time in time-dependent problems.
● Requirements

— A “fast” coarse solver (G), and an “accurate” fine 
solver F. 

— G should have enough physics, resolution, ..etc to 
propagate the “essential” physics forward in time.

● Also needed:
— Convergence measure.
— Operators to transform the states of G and F to inputs 

for F and G, respectively.
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Parareal – Prior Art and Current Work

● Y. Maday, G. Turinici, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 
387–392.

● L. Baffico, S. Bernard, Y. Maday, G. Turinici, G. Zérah, Parallel 
in time molecular dynamics simulations, Phys. Rev. E 66 (5) 
(2002) 057706.

● ...
● D. Samaddar, D.E. Newman,  R. Sánchez, Parallelization in 

time of numerical simulations of fully-developed plasma 
turbulence using the parareal algorithm, J Comp Phys 
229(18) (2010) 6558

● L. Berry, W. Elwasif, J. Reynolds-Barredo, D. Samadar, 
R. Sanchez, and D. E. Newman, Event-Based Parareal: A 
data-flow based implementation of Parareal, 
In Preparation. 



June 8, 2011 Elwasif -ITER IM - 2011 21

Classical Parareal using the IPS

● Components: Driver, Fine Solver, Coarse Solver
● Driver: Flow control 
● Coarse Component:

— Evaluate (sequentially) coarse solution for the entire 
time domain.

● Fine Component:
— Use IPS's task pool  to evaluate fine solution in 

parallel for the entire time domain (as permitted by 
available compute resources).

● Framework manages resource allocation and 
dispatching of tasks in the task pool.
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IPS Multi-Task Parallelism for Parareal 
● Two levels of parallelism
● Fine solver executes a task for each un-

converged slice, concurrently (forall)
first_slice = 1 
num_converged = 0 
for iteration = 1, max_iterations 
   for slice = first_slice..num_slices
      coarse_solve(iteration, slice) 

   forall slice = first_slice..num_slices
      fine_solve(iteration, slice) 

   for slice = first_slice..num_slices 
      test_convergence(iteration, slice) 

   num_converged += 
      first_non_converged_slice - first_slice 
   if (num_converged == num_slices) 
      end // SUCCESS 
   else 
      first_slice = first_non_converged_slice 
end //Failed to converge in max_iteration
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Classical Parareal using the IPS

It is non-trivial to find really fast and “good enough” coarse solvers. 
We can lower the barrier by dispatching tasks asynchronously.

It is non-trivial to find really fast and “good enough” coarse solvers. 
We can lower the barrier by dispatching tasks asynchronously.



June 8, 2011 Elwasif -ITER IM - 2011 24

Asynchronous Event-Based Parareal 

● Three levels of parallelism
— Concurrent components, concurrent parallel tasks.

● Three “server” components:
— Coarse, Fine, and Converge

● Driver component merely initiates the simulation.
● Implicit synchronization using IPS asynchronous events 

published to pre-defined topics (channels).
● A task in a time slice (fine solve, coarse solve, 

convergence check) is started as soon as its 
prerequisites are satisfied.

● Components manage re-launch of tasks when lack of 
resources prevent immediate execution. 
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Improved Utilization And Run Time 

But why execute the coarse (and fine) tasks when “the reach” of 
the coarse solver is obviously diminished ??

But why execute the coarse (and fine) tasks when “the reach” of 
the coarse solver is obviously diminished ??



June 8, 2011 Elwasif -ITER IM - 2011 26

Dynamic Slice Addition In Parareal

Significant reduction in required resources, while maintaining 
convergence properties.

Significant reduction in required resources, while maintaining 
convergence properties.
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IPS Flexible Task Parallelism Improves 
Utilization and Solution Time

No change to the “core” solvers, only in the task model and 
execution flow control.

No change to the “core” solvers, only in the task model and 
execution flow control.
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SWIM Portal – Real-Time Job Monitoring

• http://swim.gat.com:8080/monitor

– Server hosted at General Atomics

• Portal usage is completely optional – IPS jobs 
will run without it

• Real-time monitoring of job progress

• IPS framework instrumented to automatically 
provide portal with status information based on 
execution flow

– Component method invocations

– Data management 
operations

– Task failures

– Messages sent via 
simple http protocol

• Components can provide 
additional information to 
portal

Main page summarized 
lists all recent IPS runs 
with latest status 
information

Run page provides 
history of all messages 
received by portal
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SWIM Portal – Real-Time Monitoring & 
Analysis

• Simulation monitoring 
and summary analysis
via portal-based data
store and web browser

• Monitoring component 
(in IPS) exports data of 
interest to NetCDF file

– Separate from Plasma 
State, smaller

• Portal imports monitor file 
from web-accessible space on simulation 
platform

• Simulation summary uploaded to MDS+, 
available for analysis.

• HTML5 based summary graphs

• Comparisons (simulation & Experimental)
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Parameter Sweeps & Optimization - DAKOTA

● DAKOTA Toolkit 
— Optimization
— Uncertainty Quantification
— Parameter Estimation
— Parameter Studies

● Dynamic instantiation of IPS
simulations under DAKOTA 
control

● Adapters map IPS simulations
to DAKOTA specs

● Exploit IPS resource and task 
management and multiple 
concurrent simulations capabilities

Adapter 1

DAKOTA

IPS

Simulation 1

Simulation 2

…

Simulation 3

DAKOTA Bridge 
Component

Adapter 2 Adapter 3 …
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Summary

● IPS provides a simple, light-weight framework for loosely 
coupled, file-based, coupled simulations.
— When data exchange size and frequency allow.

● Adapting stand-alone codes for us in the IPS is fairly 
straight forward
— Greatly simplifies debugging for coupled simulations.

● Multiple levels of concurrency provides flexibility to exploit 
parallelism and improve resource utilization. 

● Light weight, highly expressive Python environment 
simplifies component development
— Total size of four Parareal components: 913 LOC
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Some Meta Thoughts

● Trade off between flexibility and robustness should 
not be rigid
— Different needs during different phasis in a project

● Incurring Technical Debt  may be necessary
— As long as the interest doesn't grow too high

● Really Big machines are around the corner
— Today's supercomputer is tomorrow's cluster.

● Capability vs Capacity Computing
— We will probably need both, maybe on the same 

machine.
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Questions?
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