

Welcome and Background

W.A. Houlberg ITER Organization

Integrated Modelling Technology Workshop Organised jointly by IO and CEA/IRFM Cadarache 8-10 June 2011

Topics

Two phases in the development of the ITER IM Programme:

- Phase 1: Infrastructure Development (2011-2020)
- Phase 2: Physics Development (2015-)

Contract for ITER IM infrastructure

IM Strategic Objectives

IM Technology Workshop objectives

Phase 1: Infrastructure Development (2011-2020)

- Design and implementation of a plasma modelling environment that addresses all anticipated Use Cases
- 3 year contract awarded to IM Design Team led by CEA (F. Imbeaux)
- Operational and tested prior to significant operation (2020)

Phase 2: Physics Development (2015-)

- Implementation of a full range of physics models and components
- Address coupling between core, edge, SOL, divertor, wall, external systems
- Flexible implementation of a range of models from *ab initio* to 'reduced' depending on the Use Case

Three-year framework contract:

- Signed Dec 2010

Consortium of several partners:

- CEA: F. Imbeaux (CR), B. Guillerminet, P. Huynh
- CRPP/EPFL: J. Lister, O. Sauter, B. Duval
- Chalmers: P. Strand
- AREVA TA (software quality procedures, lifecycle management): M. Brun

Participation of other IO divisions:

- CODAC: L. Abadie, S. Simrock, A. Winter
- IT: J-D. Delaplagne
- Diagnostics: G. Vayakis
- H&CD: P. Thomas

Status:

- Task Order 1 launched for Conceptual Design

Design – Task Order 1 (Dec 2010 - Mar 2012)

Conceptual Design – define functionalities of the ITER modelling infrastructure and technical solutions:

- Framework for integrating physics components in a plasma simulation code
- Framework for automated execution of codes for plasma reconstruction
- Programming languages
- Data model(s) for physics parameters and machine descriptions
- Software and procedures for storing, retrieving and managing physics data
- Hardware requirements for plasma modelling
- User interfaces
- Data visualisation tools
- Standards and guidelines for documentation and traceability of physical data
- Standards and guidelines for documentation and traceability of the codes and components used in a given simulation
- Collaborative development tools (for ITER Party members to participate in joint development of physics software)
- Remote data access and remote user access
- Interfaces with software from ITER Parties running on facilities outside of the IO

Establish a timeline for development, installation, testing and the expected resource requirements of the deliverables

IM Strategic Objectives

(IM1) The IM Programme shall establish an integrated suite of predictive physics codes of varying complexity to describe the ITER plasma and its interactions with structures and auxiliary systems.

- (IM1.1) ... build on the expertise of the ITER Members by adapting relevant software ...
- (IM1.2) ... build on the expertise of the ITER Members by providing links to supplementary resources
- (IM1.3) Procedures and conditions for incorporating modelling elements ...
- (IM1.4) A set of standards and guidelines shall be established ...
- (IM1.5) A set of acceptance criteria and procedures shall be established ...
- (IM1.6) A version control system shall be established ...
- (IM1.7) A regression testing programme shall be established ...
- (IM1.8) A scientific workflow management system shall be implemented ...
- (IM1.9) A website shall be developed ...

(IM2) The IM Programme shall establish a programme to address IM application needs in cooperation with the ITER Members.

- (IM3) The IM Programme shall develop a plan, jointly with the CODAC & IT Division, for computer hardware, software, data storage and communication needs specific to the IM Programme.
- (IM4) The IM Programme shall develop a plan, jointly with the Diagnostics Division, for establishing a suite of synthetic diagnostics to simulate measurements.
- (IM5) The IM Programme shall develop a plan, jointly with the Diagnostics and CODAC & IT Divisions, for establishing a suite of interpretive analysis tools to process diagnostic data into spatially and temporally resolved physics quantities.

Being addressed by: IO IM, IO IM and Design Team, IM Technology Workshop

....

IM Technology Workshop Objectives

Address a subset of IM Technologies related to:

- Use Cases
- Frameworks/Workflows
- Data Structures, Descriptions, Code/Component Interfaces
- Multi-scale Physics and Large Scale Computing
- Automated Reconstruction
- Plant System Integration

Focus presentations and discussion on:

- Strengths and weaknesses of the technologies, extensions in progress
- Long term viability in a changing computing environment
- Types of application but avoid details of physics results
- Adaptability to ITER Use Cases
- Lessons learned, e.g.:
 - Easily adaptable vs manpower intensive
 - Robustness vs fragility

Constructive discussion is critical