Scientific Workflows in Fusion EUFORIA & EFDA-TF-ITM

> David Coster, Par Strand Contributors to EUFORIA Contributors to EFDA-TF-ITM

International Conference on Parallel Computing 1-4 September 2009, École Normale Supérieure de Lyon, Lyon, France

ParCo2009

EUFORIA FP7-INFRASTRUCTURES-2007-1, Grant 211804

2009-09

ParCo2009

- Why should this be of interest/relevance to the ParCo2009 audience?
 - Some of the separate pieces are "grand challenge" levels in their own right
 - Already using significant amounts of CPU resources
 - Will need even more as we scale to future devices
 - Also looking for better algorithms ...
 - Community is looking at integrating the pieces together
 - Ontology defined

2009-09

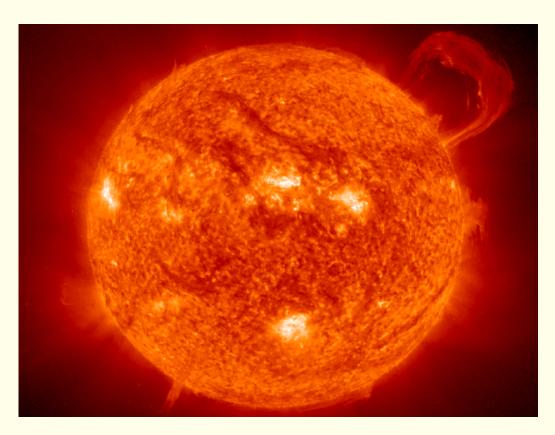
 Starting to build infrastructure to launch HPC, GRID pieces from a Scientific Workflow Manager

ParCo2009

Connections to DEISA

- EUFORIA HPC partners are part of DEISA
- EUFORIA has benefited from the DEISA communities CPU awards
- Already had some joint training activities
 - More in the future?
- Potential overlap with the code porting activities also carried out by DEISA
 - And from now on by the HLST of the HPC-FF

ParCo2009

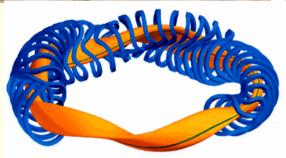

EUFORIA FP7-INFRASTRUCTURES-2007-1, Grant 211804

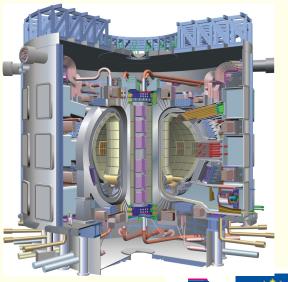
2009-09

Fusion

- Energy source for the sun and other stars
- Provides a potential source of base load energy production
- Been working on this for more than 50 years
- Has turned out to be a very difficult problem

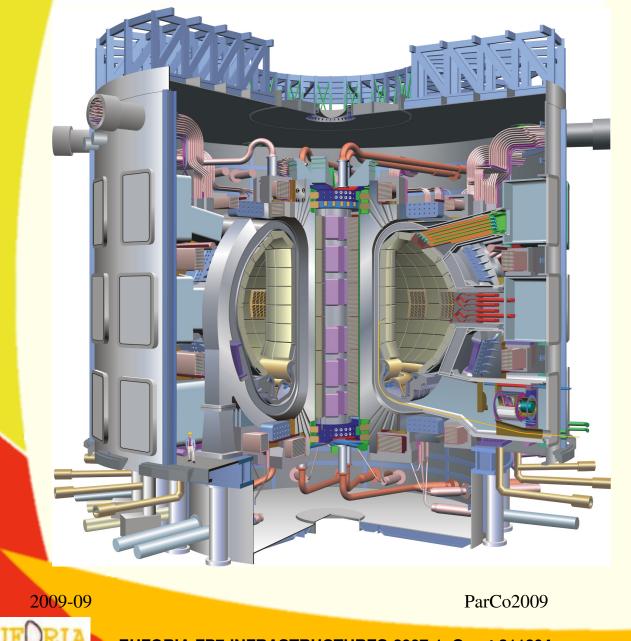
2009-09





EUFORIA FP7-INFRASTRUCTURES-2007-1, Grant 211804

Fusion


- Two main lines of research
 - Inertial confinement
 - Implosion of small pellets
 - NIF at LLNL
 - Magnetic confinement
 - Two main lines of research at the moment
 - Stellarator W7X
 - Currently under construction
 in Greifswald in Germany
 - Tokamak ITER
 - To be constructed in Cadarache in France

ParCo2009

2009-09

ITER

Involves 7 partners representing more than 50% world population

Costs > 10 G\$

Under construction in Cadarache, France

Key element on the path to fusion energy production

infrastructure 10000

DEISA awarded 2000k cpu hours to EUFORIA

	EMC3-Eirene	GENE	BIT1	GEM
Cpu hrs req	300k	600k	200k	1000k
Site req	RZG	RZG pref	Both	RZG pref
Countries	DE	DE,CH	AT	DE,AT,PT
Lead Assoc	Juelich	IPP-Garching	OAEW	IPP-Garching
Lead person	H. Frerichs	F. Jenko	D. Tskhakaya	B. Scott
Recommend				
RZG	300k(100k)	600k(200k)	D. Tskhakaya 100k(33k)	
BSC			200k(250k)	800k(1000k)
	Small cases ported to GRID freeing up HPC resources		Moved from running on a single cpu to running on ~ 1024	

ParCo2009

EUFORIA FP7-INFRASTRUCTURES-2007-1, Grant 211804

2009-09

EUFORIA

14 member Institutes3.65M€ over 36 months

522pms covering

- Management
- Training

2009-09

- Dissemination
- Grid and HPC infrastructure & support
- Code adaptation & optimization
 Workflows
 Visualization

Consortium Members

e-infrastructure

LOPIN DOM

Country	Institute	Capabilities	
SWEDEN:	CHALMERS University of Technology (coordinating)	Fusion, Grid, (CS)	
FINLAND:	CSC - Tieteellinen laskenta Oy	HPC, (Grid),	
	Åbo Akademi University	Code Optimization, CS	
FRANCE:	CEA - Commissariat à l'énergie atomique – Cadarache	Workflow, Fusion, CS	
	Université Louis Pasteur	Visualization, Applied Math	
GERMANY:	Forschungszentrum Karlsruhe GmbH -FZK	Grid, Code parallelisation	
	Max-Planck-Institut für Plasmaphysik - IPP	Fusion, (HPC, Grid)	
ITALY:	ENEA	Fusion, Grid, HPC, GATEWAY	
SLOVENIA:	University of Ljubljana -LECAD	Visualization, CS	
POLAND:	Poznan Supercomputing and Networking Centre	Grid, Migrating Desktop, CS	
SPAIN:	Barcelona Supercomputing Center – Centro Nacional de Supercomputación -BSC	HPC, Code optimization	
	Centro de Investigaciones Energéticas Medio Ambientales y Tecnológicas -CIEMAT	<i>Grid, Code parallelization, Fusion, Grid, NA</i>	
	Consejo Superior de Investigaciones Cientificas - CSIC	Grid, CS, (NA activities)	
UNITED KINGDOM:	The University of Edinburgh - EPCC	HPC, Code Optimization, NA, User support, (GRID)	
2009-09	ParCo2009	***	
IFORIA -			

Promoted Codes

BIT1 (s+p) [Kinetic 1D3V (1D in usual and 3D in velocity space) code for simulation of the plasma edge. Code includes nonlinear model for Coulomb and charged-neutral particle collisions, and simplified linear model of plasma-surface interactions.]

CENTORI (p) [The CENTORI code is a fully toroidal (arbitrary aspect ratio, arbitrary beta) two-fluid, electromagnetic turbulence simulation code. It builds on the well-documented CUTIE code by allowing the computation of turbulence in realistic tokamak geometries and at high beta.]

COREDIV (s+p) [Transport of energy, main ions and impurity ions in the core and the scrape of layer regions]

EIRENE (s+p) [EIRENE is a kinetic neutral particle and line radiation transport code.]

ELMFIRE (p) [Gyro-kinetic full-f particle code, with mostly global emphasis.]

ERO (s+p) [gyro-kinetic for impurity transport in plasma + following of molecular and atomic processes (providing 3D simulation of densities and plasma light emission) + plasmasurface interaction part including simulation of surface contents]

ParCo2009

ESEL (p) [Turbulence and profile evolution at the outboard midplane in the SOL using a fluid (ESEL) and gyrofluid (GESEL) approach]

GEM (p) [gyrofluid (GEM is local, GEMX is nonlocal, 6 moment variable equations for each species, plus field equations for 2 potentials (electric, parallel magnetic); up to three ion species have been run; turbulence and profiles solved together, flow and magnetic current equilibrium are necessarily part of this

GENE (p) [GENE is a nonlinear gyrokinetic code to investigate plasma turbulence]

ISDEP (p) [Kinetic theory of transport based on Langevin Equations; Ion-ion and ion-electron collisions included; New stochastic terms (heating and turbulence) are envisaged]

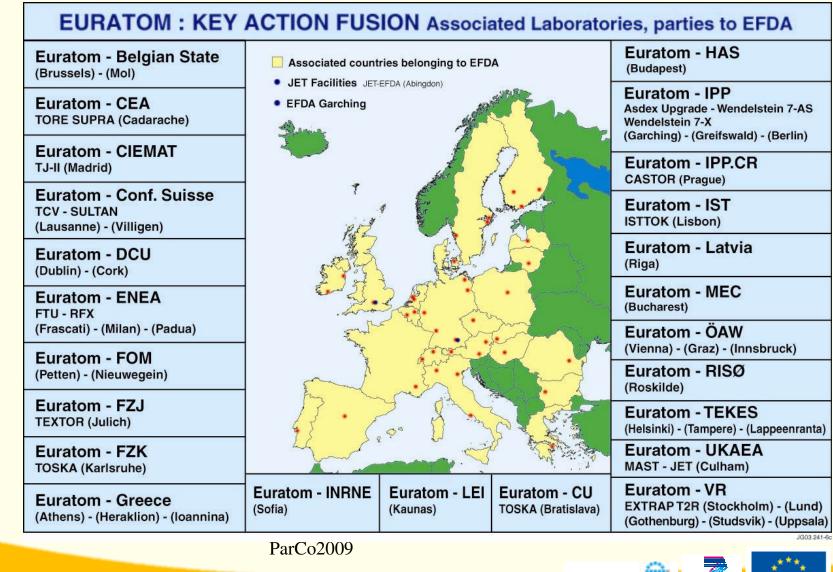
SOLPS (s+p) [B2-Eirene consists of two codes tightly coupled together: B2 (multi-fluid solving continuity, momentum and energy equations for the plasma component on a cell cetntered grid; EIRENE (Monte-Carlo neutrals code providing sources for B2 based on a plasma background provided by B2)]

TECXY (p) [The code simulates 2D multifluid plasma and impurity transport in the tokamak edge including drifts, currents and self-consistent electric field Solves a set of fluid equations (Braginskij equations) describing the edge plasma on a 2D grid including SOL and transition layer

TYR (p) [Drift Alfven plasma fluid turbulence and transport in flux-tube geometry.]

2009-09

EFDA


e-infrastructure

European Fusion Development Agreement

All EU Laboratories / Institutions working on Fusion are parties to EFDA

Defined under EURATOM under "Contract of Associations"

2009-09

TF Leader : P. Strand, Deputies: L-G. Eriksson, R. Coelho

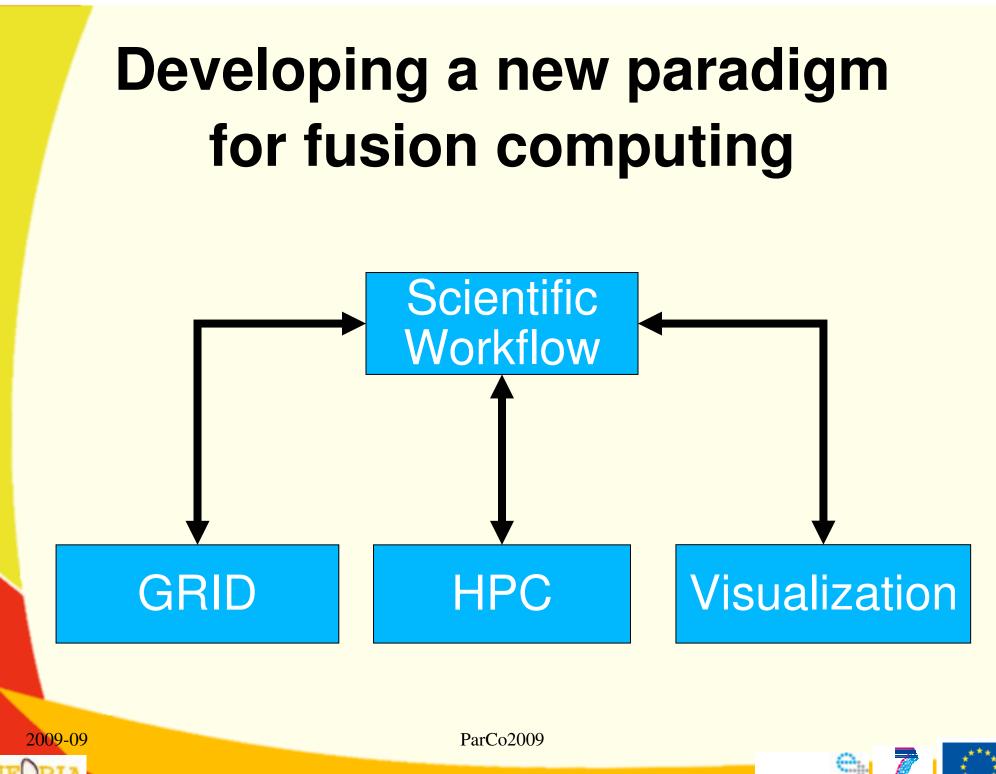
EFDA CSU Contact Person: D. Kalupin

EUROPEAN FUSION DEVELOPMENT AGREEMENT

Task Force INTEGRATED TOKAMAK MODELLING

ITM-TF charge

:: EFDA


- Co-ordinate the development of a coherent set of validated simulation tools for ITER exploitation
- Benchmark these tools on existing tokamak experiments
- Provide a comprehensive simulation package for ITER and DEMO plasmas.
- Coordinate the European Software developments with the aim to increase quality and reduce parallel efforts. (Streamline the code base)

ITM-TF Remit

- Development of the necessary standardized software tools for
 - interfacing code modules and
 - accessing experimental data.

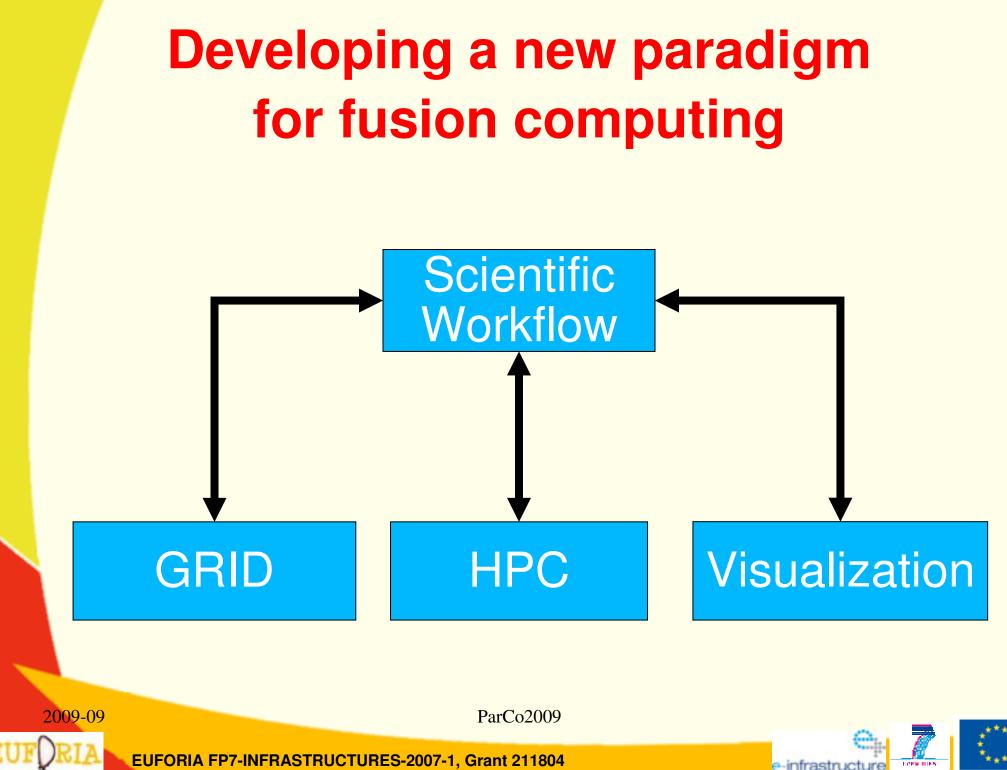
Medium term activities

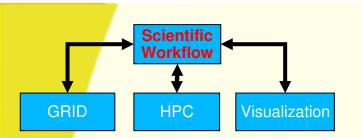
 Support the development of ITER-relevant scenarios in current experiments.

EUFORIA FP7-INFRASTRUCTURES-2007-1, Grant 211804

e-infrastructure

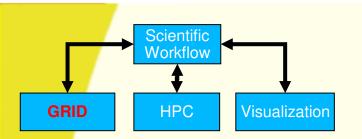
Batch, GRID and HPC


	Batch	GRID	HPC
Current usage within the fusion community	Extensive • JET (339 cpus) • Most associations (IPP-TOK 400 cpus) • Gateway (128 cpus)	 Only at CIEMAT Starting to see some usage at Juelich Plans for usage at IPP 	 Extensive use of national facilities Extra-national usage via DEISA
Main issue preventing more usage	 Lack of more local cpus 	 Lack of knowledge Difficulties getting certificates 	 Difficult for Associations without strong national facilities
Currently being addressed by		EUFORIA • has provided training • also developing facilities to launch jobs from the Gateway	EUFORIA • has provided training • has worked on codes HPC-FF starting August 1 st • HLST
Longer term		?	IFERC computer (2012)


ParCo2009

EUFORIA FP7-INFRASTRUCTURES-2007-1, Grant 211804

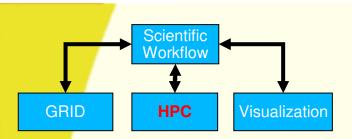
2009-09



Scientific Workflows

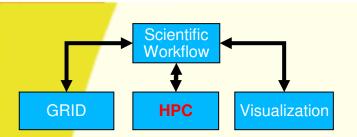
- Need to make a convincing case that scientific workflows will
 - Enhance productivity
 - Allow for new approaches problems to be solved

- Allow for traceability, reproducibility, ...
- Allow for a better use of resources



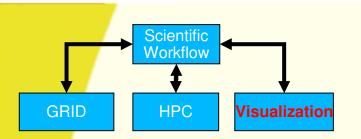
Grid Computing

- Grid computing needs
 - To be transparently coupled into the scientific workflows
 - Needs to be reliable (every launched job should run)
 - Needs to improve performance (if resources are available, a launched job should start rapidly)
 - To inter-operate with the other levels at the data access level



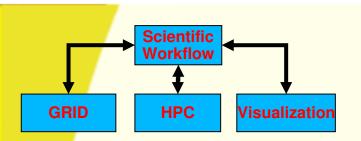
HPC

- Need to be transparently coupled into the workflows
- HPC facilities will need to deal with jobs coming from workflows
 - Negotiations about resource availability and expected response times
 - Deal with communications between the different parts of a workflow
 - Better integrate inter-operability of data between HPC and the other levels



HPC, II

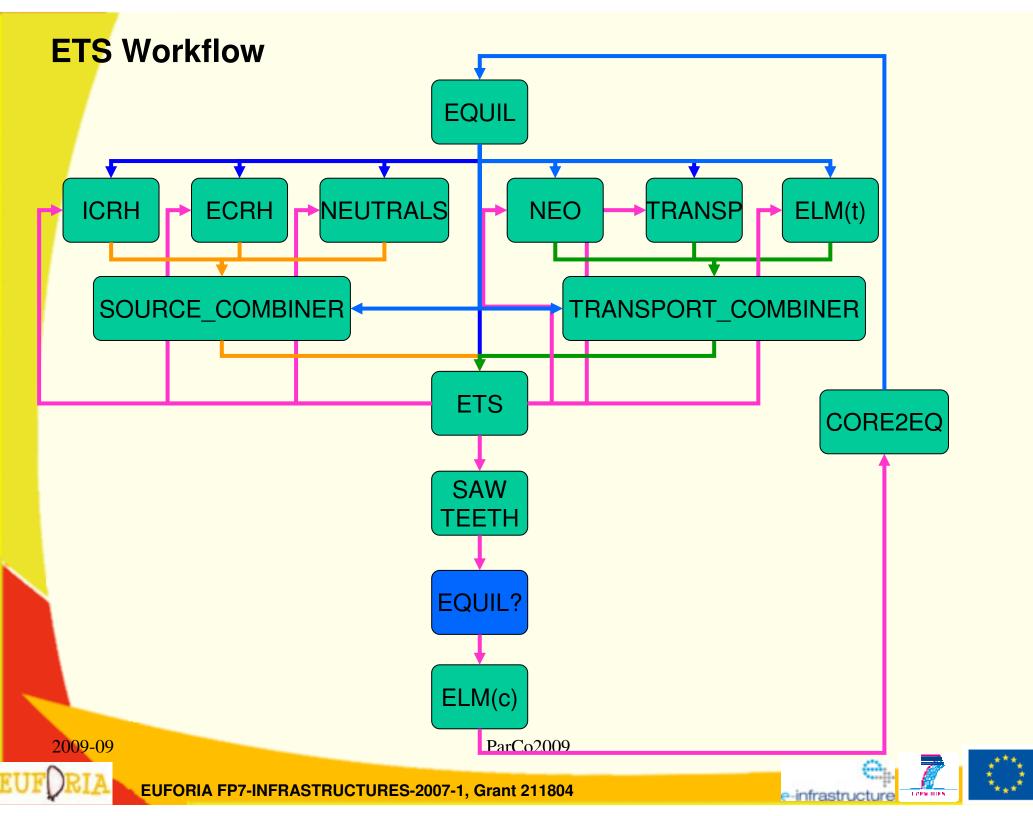
- Need to better prepare jobs to scale from the present 1k 10k cpus to 100k 1M cpus
 - This means at the development stage
 - Having machines exposing large numbers of cores to code developers interactively or almost interactively (< 5 minute turn around)
 - Helping the code developers with algorithms, ...
 - Helping the code developers with better IO strategies
 - At the production stage
 - Having the resources available



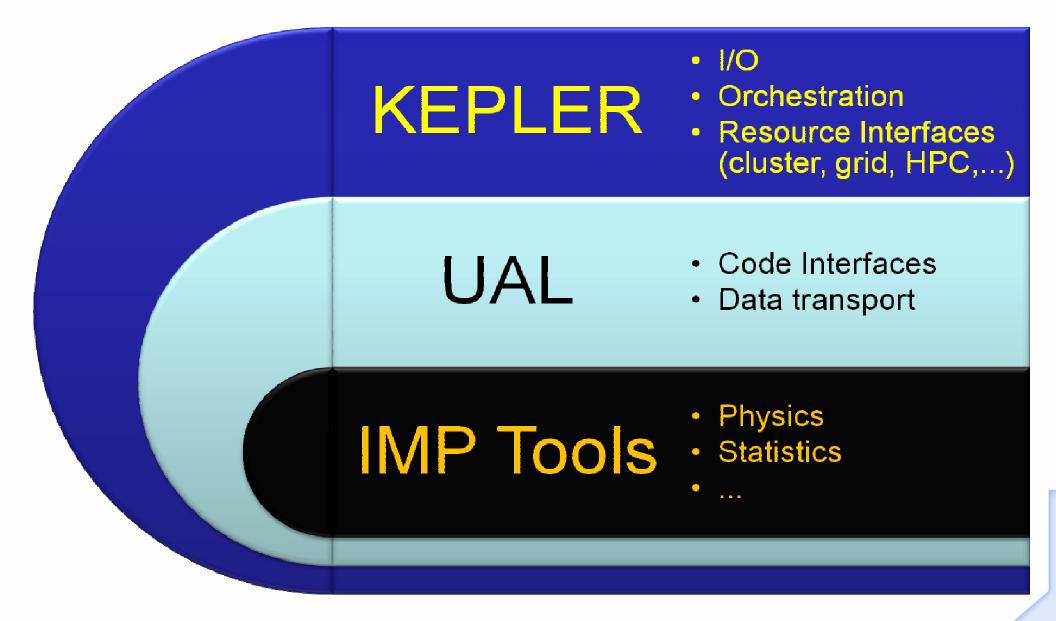
Visualization

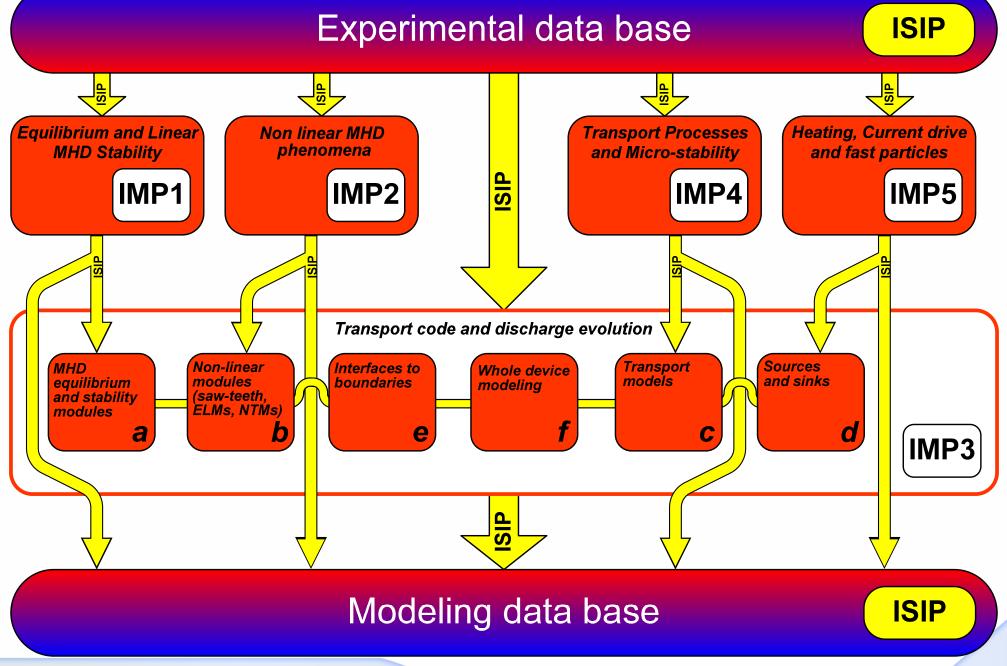
- Challenges in visualization include
 - Visualizing the data flowing around a workflow so that the scientist can monitor/diagnose a running job
 - Deal with very large amounts of data produced in a distributed environment
 - Help provide the scientist with a better understanding of his/her results
 - Help the scientist by producing visualizations with that "Wow!" factor

ParCo2009

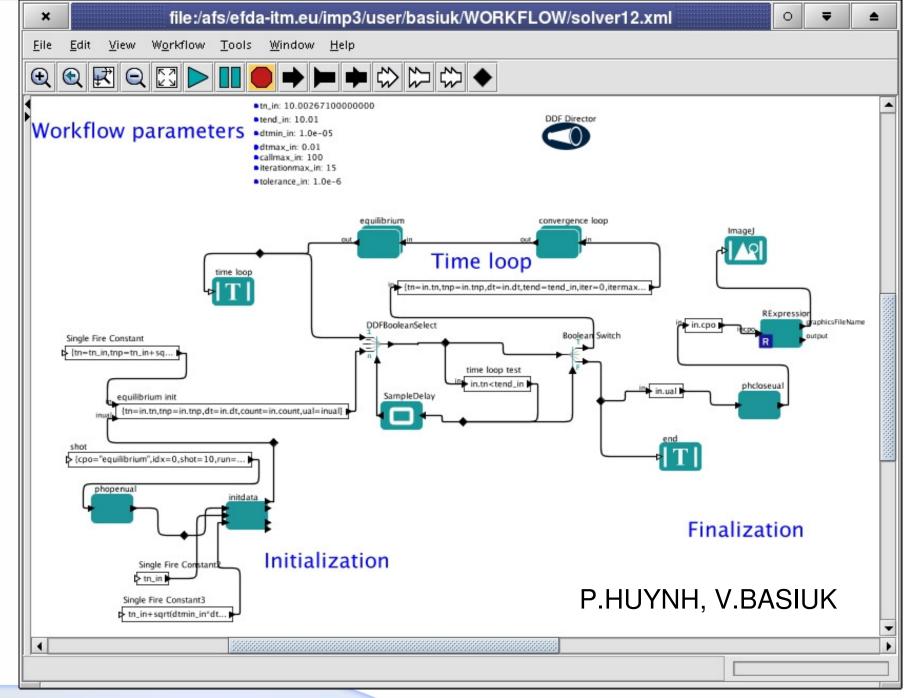


- Need to make it simpler to move data between the different parts of a workflow
 - Remote data access
 - High speed data transfers
 - Better integration
- Need to think now about very large data sets
 - What is the "best" relationship between petaflops and petabytes?





ITM-TF Application Structure



ITM

KEPLER Transport Workflow

Task Force

INTEGRATED TOKAMAK MODELLING

Summary

EUFORIA

- Has ported/optimized a number of codes
 - For the GRID
 - FOR HPC
- Demonstrated the ability from a central workflow to
 - Launch a job on the GRID
 - Launch a job on HPC
 - Launch a sub-workflow on the GRID
 - Launch a work-flow on HPC
- ITM

2009-09

- Has demonstrated KEPLER workflows
- Code integration using the UAL
- Now need to make this "routine"

