EFDA Task Force Integrated Tokamak Modelling EUROPEAN FUSION DEVELOPMENT AGREEMENT **Discharge Evolution: Edge Transport Modelling**

Goal: Implementation, integration, verification and validation of edge codes

Edge codes participating in the ITM effort:

- **SOLPS** (2d multi-species fluid plasma; 2d fluid neutral or 3d kinetic neutral)
- **BIT1** (1D PIC kinetic code)
- **ERO** (3d Monte-Carlo impurity code)
- **ASCOT** (3d trace ion/electron Monte-Carlo code)
- **EMC3-EIRENE** (3d multi-species fluid Monte-Carlo code; 3d neutral kinetic code)
- **EUNOMIA** (3d neutral Monte-Carlo code)

Present status

- SOLPS:
 - Can process data store in an EQUILIBRIUM CPO to generate a grid (CARRE component)
 - Can generate the output of the B2 component of SOLPS to the EDGE CPO
 - Can also use ITM-AMNS data
- **ASCOT, BIT1, ERO**:
 - Starting the implementation of CPOs

Next Steps

- Complete the use of CPOs in SOLPS
- Develop workflows coupling the edge codes (initially as $A \rightarrow B$, but eventually as loops)
- Couple the Core & Edge

and ITM-TF contributors

ITM General Grid Description

The problem of efficiently storing high-dimensional data on complicated geometries drove an effort to design the **ITM general grid description**: combining dedicated grid data structures with the CPO concept to separate the physics model from the discretization used by a specific code.

Generic data types: used in multiple CPOs, enable construction of general tools for data processing and visualization

EFDA ITM-TF Expo "The European Integrated Modelling effort : challenges and achievements" – 38th EPS 2011 D. Coster, IPP, D. Tskhakaya, F. Subba, ENEA, H.-J. Klingshirn, IPP, R. Wieggers, FOM, R. Stankiewicz, IPPLM, M. Airila, TEKES, X. Bonnin, CEA, D. Borodin, FZJ, G. Pereverzev, IPP, T. Koskela, TEKES, T. Lunt, IPP,

- 1.00 Definitions of grid spaces. Structure array(nspace).
- 0...0 Definitions of subgrids. Structure array(nsubgrids
- Index of the subgrid (as stored in grid subgrids) the data is stored on.
- Scalar representation of data. One scalar entry is tored per object in the

- Grid description structure (for this CPO):
 - defines grid geometry, connectivity & metrics
 - defines subgrids (for data storage and domain identification)
- Scalar data field structure:
 - Associates data with a specific subgrid
 - holds data (in possibly) complex data representation)

A plasma solution stored in the edge CPO on a 2d unstructured quadrilateral grid.

Left: grid & data in the divertor region.

Top: grid around at the X-point with cells labeled with their object descriptor, which is used to uniquely identify objects or classes of objects in the grid.

ITM Grid Service Library

The general grid description is a complex concept, designed to support a broad range of discretization and use cases.

To support users in using it, a set of general tools is provided in form of the ITM grid service library.

Key features:

Visualization:

(H.-J. Klingshirn), using the Vislt-UAL connector (part of the grid service library)

 Multi-language (currently Fortran & Python, C++ planned) • High-level interface for typical standard discretizations (n-dimensional structured grids, simple unstructured grids) • Low-level interface for accessing discretization properties

 Integration with VisIt enables data visualization directly from the ITM UAL database system (see top-right figure)