EFDA Task Force Integrated Tokamak Modelling EUROPEAN FUSION DEVELOPMENT AGREEMENT **Benchmarking European core turbulence codes** within ITM Framework

The core benchmark test case

The test case consists of a synthetic shot of a medium size, ASDEX like tokamak operating in circular L-like-mode.

Profiles

$$\begin{pmatrix} T_i \\ T_e \end{pmatrix} = \begin{pmatrix} T_0 \\ T_0 \end{pmatrix} \exp\left(-\frac{8\rho_{tor}^2}{Ra}\right)$$

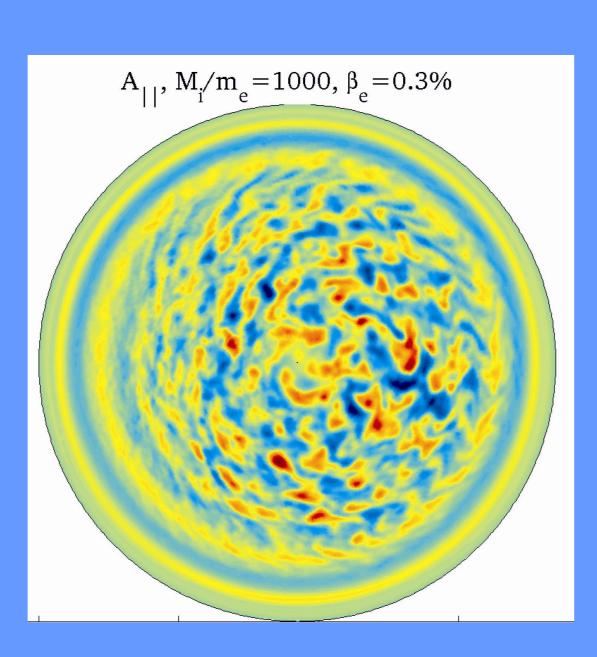
dlogT	$= 4 - \frac{2\rho_{tor}}{2\rho_{tor}}$	$q = 1.3 \exp($	$\int \rho_{to}^2$
dlogn		9 TOONP	a^2

Toroidal flux radius: $\Phi = \pi B_0 \rho_{tor}^2$

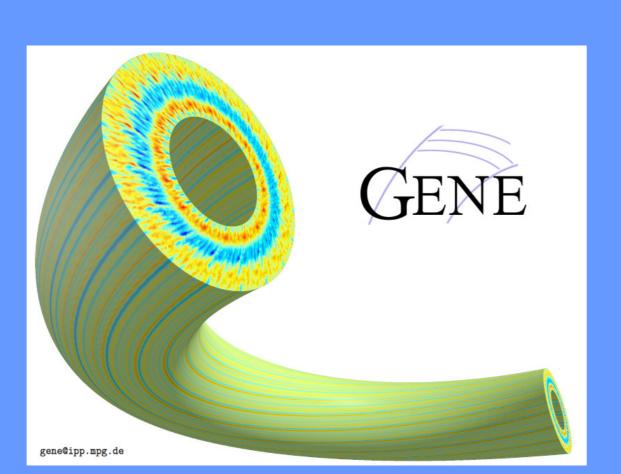
Parameters:

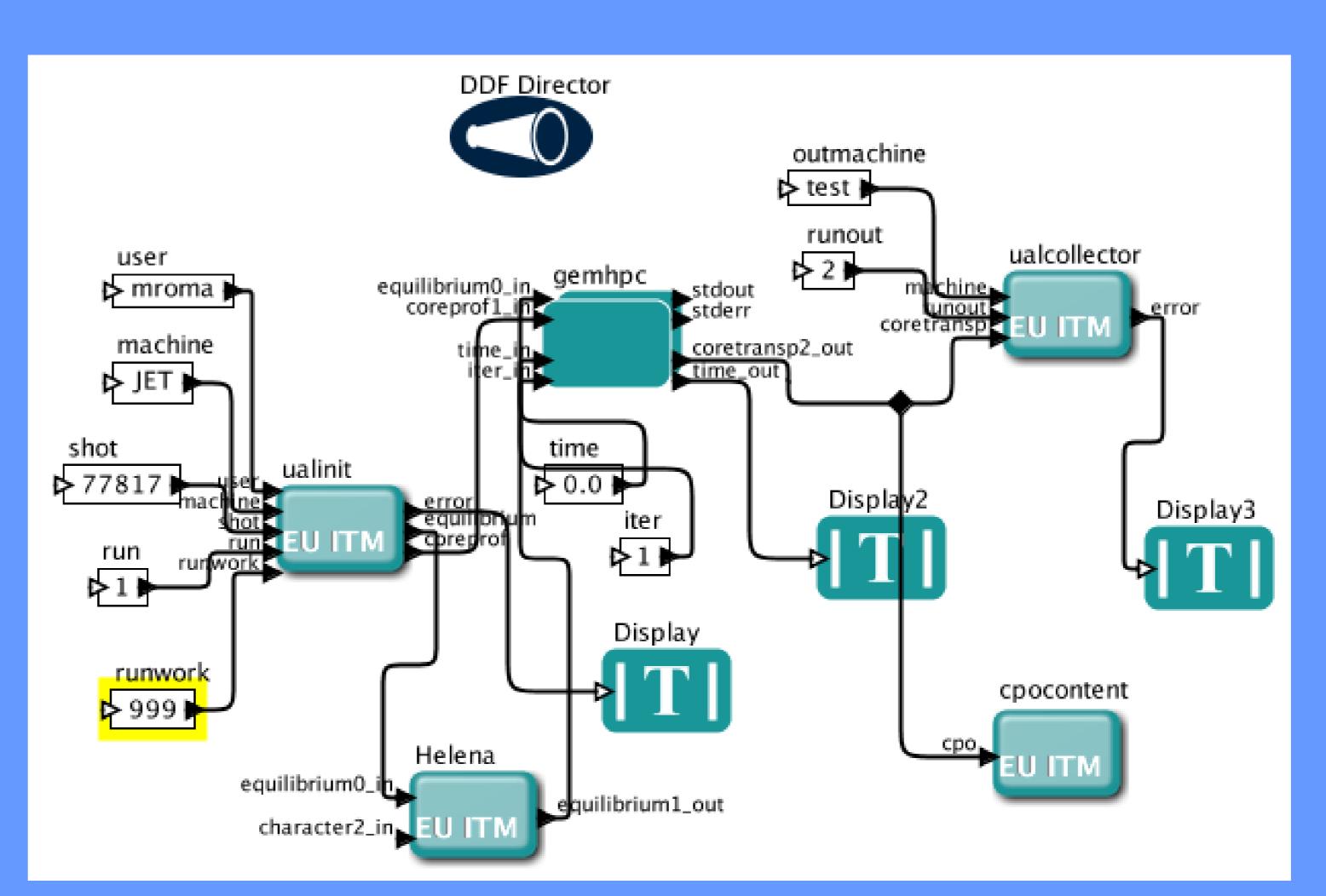
 $R = 1.65 \text{ m}, a = 0.5 \text{ m}, B_0 = 2 \text{ T}, Z_{eff} = 2$, $T_0 = 5 \text{ keV}, n_0 = 6 \times 10^{19} \text{ m}^{-3}$

Participating fluid and gyrokinetic **European turbulence codes**


ATTEMPT^[1]: four field fluid edge code CENTORI^[2]: full toroidal, two-fluid code GEM(R)^[3,4]: gyro-fluid core/edge code delta-f gyrokinetic core/edge $dFEFI^{[5]}$: code PIC full-f gyrokinetic core code ELMFIRE^[6]: delta-f gyrokinetic core code GENE^[7]:

NEMORB^[8]: PIC full-f gyrokinetic core code


EFDA ITM-TF Expo "The European Integrated Modelling effort : challenges and achievements" – 38th EPS 2011 AH Nielsen Risø DTU, B Scott^[3,4,5] IPP, MJ Pueschel^[7] IPP, S Janhunen^[6] TKK, M Romanelli^[2] CCFE, A Bottino^[8] IPP, T Ribeiro^[3,4,5] IPP and P Knight^[2] CCFE


Advantages of code cross-verification within ITM framework: – All involved codes share the same input file in the form of CPOs and a well defined HDF5 file is used as output (in future turbulence CPO)

- A general interface has been developed which provides the link of the particular turbulence code to ITM communication standards via XML and CPO's - Easily extended to other benchmark cases, including experimental data from the ITM database

Vector potential from NEMORB^[8]

Electrostatic potential from GENE^[7] 36.000 CPUh on HPC-FF

Purpose: cross-verification of the leading core and edge turbulence codes, benefitting of the use of ITM standards

Kepler workflow, using experimental/synthetic JET data, coupling the equilibrium code Helena and the turbulence code GEM^[3]. GEM is executed in batch on the HPC-FF.

Common Interface

Status and perspectives

- database

References

- Communication between the ITM infrastructure and the turbulence codes is handled by a special designed interface, i.e. CPO read/write and XML-parsing.

- The codes keep their original structures and are provided as subroutines using standard Fortran or C arguments for the necessary input parameters and for the output of computations.

- Initial profiles are stored in ITM database in the form of CPOs to run in Kepler workflows (Gateway) and in ASCII files for FORTRAN workflows to run on the HPC-FF

So far, approximately 1M CPU/hours used on the HPC-FF

- Ongoing effort, first stage will be finalized by the end of this year

Extend by a similar verification effort using experimental data of leading European fusion devices from ITM

^[1] Reiser PP 12 122308 (2005),^[2] Fitt pro. Ins. Mat. ECMI 1047 (2008)

- ^[3] Scott PP 12 102307 (2005), ^[4] Kendl PP 17 072302 (2010)
- ^[5] Scott PP 17 102306 (2010), ^[6] Heikkinen Contrib PP 44 (2004)
- ^[7] Dannert PP 12 072309 (2005), ^[8] Hatzky PP 9 898 (2002)